milliEye: A Lightweight mmWave Radar and Camera Fusion
System for Robust Object Detection

Xian Shuai Yulin Shen Yi Tang
The Chinese University of Hong Kong  University of Electronic Science and  The Chinese University of Hong Kong
Hong Kong, China Technology of China Hong Kong, China
sx018@ie.cuhk.edu.hk Chengdu, China ytang@ie.cuhk.edu.hk
yulinshen@std.uestc.edu.cn
Shuyao Shi Luping Ji Guoliang Xing’"
The Chinese University of Hong Kong  University of Electronic Science and  The Chinese University of Hong Kong
Hong Kong, China Technology of China Hong Kong, China

ss119@ie.cuhk.edu.hk

Chengdu, China

glxing@ie.cuhk.edu.hk

jiluping@uestc.edu.cn

ABSTRACT

Recent years have witnessed the emergence of a wide range of ad-
vanced deep learning algorithms for image classification and object
detection. However, the effectiveness of these methods can be signif-
icantly restricted in many real-world scenarios where the visibility
or illumination is poor. Compared to RGB cameras, millimeter-wave
(mmWave) radars are immune to the above environmental vari-
ability and can assist cameras under adverse conditions. To this
end, we propose milliEye, a lightweight mmWave radar and camera
fusion system for robust object detection on the edge platforms.
milliEye has several key advantages over existing sensor fusion
approaches. First, while milliEye fuses two sensing modalities in a
learning based fashion, it requires only a small amount of labeled
image/radar data of a new scene because it can fully utilize large
image datasets for extensive training. This salient feature enables
milliEye to adapt to highly complex real-world environments. Sec-
ond, based on a novel architecture that decouples the image-based
object detector from other modules, milliEye is compatible with dif-
ferent off-the-shelf image-based object detectors. As a result, it can
take advantage of the rapid progress of object detection algorithms.
Moreover, thanks to the highly compute-efficient fusion approach,
milliEye is lightweight and thus suitable for edge-based real-time
applications. To evaluate the performance of milliEye, we collect a
new radar and camera fusion dataset for object detection, which
contains both ordinary-light and low-light illumination conditions.
The results show that milliEye can provide substantial performance
boosts over state-of-the-art image-based object detectors, includ-
ing Tiny YOLOvV3 and SSD, especially in low-light scenes, while
incurring low compute overhead on edge platforms.
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1 INTRODUCTION

Accurate machine perception plays a critical role in intelligent sys-
tems, such as autonomous vehicles. At the heart of perception is
to localize and identify objects of interest, also known as object
detection. With the advancement of deep learning, many convolu-
tional neural networks (CNNs) based object detectors have been pro-
posed [23, 30, 31]. While these image-based detectors have achieved
promising performance on public benchmarks like PASCAL VOC
and COCO [11, 22], they are vulnerable to adverse environmental
conditions [6, 32], such as foggy weather, smog or poor illumination.
On the other hand, mmWave radars [1, 13, 25] have emerged as a
low-cost sensor modality for all-weather conditions and have been
widely used in many embedded and edge applications. Owning to
the ability to work under darkness and the penetrability to airborne
obstacles, mmWave radars are widely adopted in combination with
cameras in non-ideal environments where the functionality of RGB
cameras is hindered. Despite the above salient characteristics, the
point cloud from mmWave radars is usually sparse and noisy due
to the specular reflections, signal leakage, multi-path effects and
low angular resolution, making the accurate radar-based object
detection challenging.

Figure 1illustrates the complementary characteristics of mmWave
radar and camera. Figure 1(a) shows the results of radar-based track-
ing using DBSCAN clustering and Kalman filter, where the 3D point
cloud and 3D boxes are mapped onto 2D image, and colors on points
represent different depths. Figure 1(b) shows the results of Tiny
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(b) Object detection results of Tiny YOLOv3 on RGB images.

Figure 1: An example of complementary detection perfor-
mance of mmWave radar and camera. Radar data are noisy,
sparse, and in low-resolution, while effective under poor
illumination. The image-based object detector fails to de-
tect the person in darkness, while it can accurately predict
bounding boxes under ordinary light conditions.

YOLOV3, a compact image-based object detector. In the first scene,
the radar is able to localize the person, while the image-based ob-
ject detector fails due to insufficient illumination. In the second
scene, the radar fails to separate two people because they are close
to each other, while the camera separates them well. Neither the
radar-based method nor the image-based method alone performs
satisfactorily in two scenes, which motivates the necessity of the
fusion of two sensing modalities.

Traditional camera and radar fusion methods generally feed ob-
servations from individual sensors into a Kalman Filter (or its vari-
ants) sequentially [7, 34]. Such an approach either over-simplifies
the radar-based detection to a point target detection problem or re-
quires hand-crafted design of the fusion strategy. Only until recently
has the deep learning based fusion been investigated [1, 3, 12, 26].
As shown in Figure 2, they resort to an intact end-to-end CNN,
which takes raw image and radar data as inputs, and achieves fu-
sion usually by concatenating the internal image and radar feature
maps. However, those naive fusion methods are largely impractical
for real-world applications. This is because the fusion model needs
to be trained from scratch using the multi-modality dataset, and the
acquisition of image feature extraction capability requires a mass
of labeled data. Unlike the comprehensive image datasets like Ima-
geNet and COCO [9, 22], which cover dozens of object categories
and scenarios, the publicly available camera and radar datasets
[1, 2] exclusively focus on highly specifical applications and sce-
narios. Therefore, users usually need to collect and annotate their
own datasets according to the object categories and deployment
environments, which is typically labor-intensive and prohibitively
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Figure 2: Left: conventional camera and radar fusion archi-
tecture that requires a large labeled image and radar dataset
(> 10,000 frames) for training. Right: our proposed fusion ar-
chitecture which enables separated weight training. Image-
relevant layers are trained on the large image dataset. Radar-
relevant layers and scenario-agnostic result-level fusion lay-
ers are trained on the small customized multi-modality
dataset (< 1,000 frames).

expensive. To tackle this challenge, we propose a loosely coupled
architecture that can adapt to a new scenario using a small amount
of labeled multi-modality data. As shown in the right-hand side of
Figure 2, the training of layers that are directly exposed to image
features is separated from the training of other modules.

Our design is motivated by two considerations. First, there al-
ready exist abundant large-scale image datasets [11, 22, 24] for
object detection that can be taken advantage of to train the image-
relevant layers. Second, compared to the image feature extraction,
radar data extraction and result-level fusion are more domain-
invariant and less sensitive to the appearance change of objects,
thus are trainable by less labeled data. Based on these observations,
we propose milliEye, a lightweight and practical mmWave radar
and camera fusion system for robust object detection. milliEye first
integrates bounding box proposals from an image-based object de-
tector and a radar-based tracker to handle adverse environmental
conditions where the image-based detector alone may fail. milliEye
then employs a novel fusion-enabled refinement module to refine
those box proposals for more accurate detection. The design of the
refinement module follows the philosophy that the weight training
of appearance-sensitive image-relevant layers is separated from the
training of other modules. Compared to current fusion techniques
[3, 7, 26, 27], milliEye has three system-level advantages as follows:
Adaptability. First, milliEye can be trained to adapt to a new en-
vironment using a small multi-modality dataset. This is attributed
to the separated weight training approach which retains the gen-
eralizable and robust image feature extraction capability. Second,
by learning-based fusion, it circumvents the rigid hand-crafted fu-
sion strategies and enables the relative importance of data from
two sensing modalities to automatically shift in response to envi-
ronmental dynamics. For example, milliEye will automatically rely
more on mmWave radar data at night, while mainly rely on camera
when the illumination condition is ideal.

Lightweight. The compute overhead of milliEye is light even com-
pared to compact image-based object detectors, such as Tiny YOLOv3
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[30], which allows milliEye to run efficiently on resource-limited
mobile and edge devices. This is because milliEye reuses the inter-
nal feature maps of image-based detector and the proposed fusion
method is highly compute-efficient. Therefore, milliEye does not
impair the real-time performance of the original detector while
yielding significant performance improvement, especially in chal-
lenging low-light scenarios.
Compatibility. Thanks to the novel fusion architecture, milliEye
can directly acquire the performance of integrated image-based
detectors trained on publicly available large-scale image datasets.
Meanwhile, users can easily choose different object detectors with-
out an overhaul re-design of the fusion milliEye. These features
allow our system to benefit from the rapid progress of object detec-
tion in the filed of computer vision.

In brief, we conclude the contributions of this work as follows:

e We collect a practical multi-modality dataset for radar and
camera fusion, based on which we investigate the perfor-
mance of existing image-based object detectors and fusion-
based detectors under different illumination conditions. Our
dataset will be made available to the community.

e We propose milliEye, an mmWave and camera fusion sys-
tem for real-time robust object detection. Our novel fusion-
enabled refinement head can enhance the off-the-shelf image-
based object detectors.

e We conduct extensive experiments to demonstrate the su-
periority of milliEye in three aspects: adaptability, compute
overhead and compatibility. In challenging scenarios, milli-
Eye achieves an mAP of 74.1% (compared to 63.0% of Tiny
YOLOv3), while only incurring an additional average delay
of 16.8 ms per-frame on Jetson TX2. To the best of our knowl-
edge, this is the first-of-its-kind object detection framework
that accounts for the above multiple system-level factors.

The rest of this paper is organized as follows. Section 2 intro-
duces relevant background including the regular mmWave radar
processing pipeline and a recap for object detection. In Section
3, we present the design of milliEye. In Section 4, we detail the
implementation and conduct extensive experiments on milliEye.
Section 5 presents related work. Finally, Section 6 concludes the
paper and discusses several limitations.

2 BACKGROUND
2.1 mmWave Radar Processing Pipeline

A mmWave radar is an active detection and ranging sensor operat-
ing within the band frequency from 30GHZ to 300GHz. In this paper,
we use a commercial Frequency Modulated Continuous Waveform
(FMCW) mmWave radar [16]. Range, doppler and AOA estima-
tion are common post-processing steps to extract the range, radial
velocity and angle of objects from the reflected radar signals.
Specifically, an FMCW radar transmits a sequence of linear
“chirps” during a frame. The received signals are mixed with the
transmitted ones to obtain a series of intermediate-Frequency (IF)
signals, whose frequencies are proportional to the distance of the
object. By applying the Fast Fourier Transform (FFT) to each IF
signal, a frequency spectrum is obtained, in which each peak indi-
cates the range of an obstacle. In addition, the motion of the object
will cause the phase of IF signals to change within a frame. The
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frequency of phase change is proportional to the radial velocity
which can be estimated by performing FFT on a group of IF signals.
When multiple TX and RX pairs are available, radars can further
estimate the AOA using the phase differences of received signals
from different virtual antennas. While increasing the number of TX
or RX can improve the angular resolution, large MIMO antennas are
impractical for commercial single-chip radars. A typical commer-
cial mmWave radar with a 3x4 MIMO array achieves poor angular
resolution about 14° in azimuth and 57° in elevation. Subsequent
to the above range, doppler and AOA estimation, mmWave radar
generates a set of points, where each point includes the 3D spatial
position and the radial velocity towards the radar (See Equation
1). Although inaccurate in position, these points can give strong
indication of the occupancy and movement information of objects.

2.2 Recap for Object Detection

Current object detection methods can be mainly classified into two
categories: single-stage detectors like YOLO [30], Single Shot Detec-
tor (SSD) [23] and two-stage ones like Faster-RCNN [31], R-FCN [8]
and Light-Head RCNN [20]. Single-stage object detectors perform
regression and classification directly on predefined anchored boxes.
As a result, they are more amenable for edge and embedded devices
due to low computational overhead. Two-stage detectors disas-
semble the detection task into two stages. Take the representative
Faster-RCNN as an example. In the first stage, the region proposal
network (RPN) generates about 300 candidate object bounding
boxes. Then an Rol (region of Interest) pooling layer crops these
candidate boxes one-by-one from feature maps. Lastly, an R-CNN
subnet consisting of several fully-connected layers performs clas-
sification and box regression for every Rol. In general, two-stage
detectors can achieve higher accuracy than one-stage ones for two
reasons. First, the RPN narrows down the number of candidate
boxes by eliminating the majority of background instances, pro-
viding a better foreground and background balance than one-stage
detectors during the training. Second, two-stage detectors conduct
the box refinement twice, once in RPN and once in the detection
layer, while the one-stage detector only performs once. However,
two-stage detectors like Faster-RCNN suffer long inference time
because they need to run the costly per-Rol detection head hun-
dreds of times for an image. To alleviate this issue, R-FCN proposes
position-sensitive score maps and position-sensitive pooling, which
enables the replacement of the heavy per-Rol detection head with
a simple average pooling operation, hence largely reduces the com-
putation. Light-head RCNN further decreases the computation by
using a thinner position-sensitive score map compared to what is
taken in R-FCN. Both single-stage and two-stage object detectors
output a great number of bounding boxes for one image. For in-
stance, YOLOv3 outputs 10646 boxes, and Faster-RCNN outputs 300
boxes. In order to eliminate redundant boxes, two post-processing
steps usually follow the neural network of object detectors. The first
step is to filter out the boxes with a low confidence score, i.e, those
that have low possibility to contain any instance. The second step
is to perform Non-Maximum Suppression (NMS), which further
eliminates overlapping bounding boxes.
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3 DESIGN OF MILLIEYE
3.1 Overview

As introduced in Section 2.2, compared to one-stage detectors, two-
stage detectors contain one additional refinement step (e.g., the
R-CNN), which increases the accuracy. Another insight is that the
radar data are indicative of the occupancy of objects, as introduced
in 2.1, which can help the refinement module better distinguish
objects from the background. Motivated by these insights, we design
anovel fusion-enabled refinement head to improve the performance
of existing image-based object detectors. In addition, to handle
challenging scenarios where the image-based object detector fails
to propose enough desirable candidate boxes for further refinement,
we exploit the radar point cloud and design a radar-based tracker
that works as an alternative box proposal module.

An overview of milliEye is shown in Figure 3. From a system-
level perspective, milliEye follows a two-stage fusion paradigm.
The first stage aims at aggregating box proposals from the image-
based object detector (J) and the radar-based tracker (R): 8 =
(8L,8%) = {bk}szl’ where K = | 8] is the total number of Rols.
Meanwhile, the global feature extraction is performed on the entire
frame for both the image and radar branch to obtain the global multi-
modality feature maps GZ and GX. Then two Rol-wise cropping
operations (i.e., the PS-Rol Align [20] and Rol Align [14]) crop the
global feature maps according to the location of box proposals to
obtain per-Rol local features: LI, LR = Cropping(gf, QR;B),
where £ = {li}szl, LR = {lllj}sz1 are the sets of local per-Rol
feature maps from two modalities. In the second stage, a fusion-
enabled refinement head predicts a new location and a confidence
score for each box: b/’C = Refinement(lli, lf, br). In Section 4.3,
we validate that this new bounding box b/ is more reliable than
the original one by, since it further incorporates the information
from multi-modality feature maps li and lf . Based on the new
confidence scores, we can determine whether each box proposal
should be retained, simply using a threshold. Note that the first
stage performs only once for each frame, while the second stage
repeats for every Rol.

To sum up, milliEye mainly consists of three modules, an image-
based object detector, a radar-based object tracker and an Rol-wise
refinement head. These three modules are assembled in a loosely
coupled manner, which endows milliEye the ability to support
different image-based object detectors. Furthermore, it enables the
separated weight training of image-relevant modules, alleviating
the reliance on a large amount of labeled multi-modality data.

3.2 Image-Based Object Detector

In this module, we employ a CNN-based object detector introduced
in Section 2.2 to obtain bounding boxes together with category
scores and confidence scores. Specifically, given an image I, a fea-
ture extractor (body) Fpoqy first extracts the internal feature maps
f = Fpoay(I). A typical feature extractor consists of several convo-
lutional layers, activation layers and pooling layers. Then another
network (head) Fj,.qq4 processes the feature maps and generates
a set of output boxes B. Thus, the entire process of an object de-
tector can be summarized as B = Fyqq(Fpody(I))- Note that both
one-stage and two-stage detectors follow this paradigm, where the
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only difference is that the two-stage object detectors include an
RPN structure in Fj,,4, while the one-stage object detectors not.

In milliEye, both the box detection results B and the internal fea-
ture maps f are leveraged by the refinement head. Specifically, B is
first filtered by a confidence threshold, and is combined with radar
boxes as the total candidate box proposals. f is used to construct
the position-sensitive score maps [8] through a 1x1 convolutional
layer. The reuse of the feature maps f from the image-based de-
tector can help save considerable computation, which is highly
desirable for embedded platforms. In additional, milliEye is compat-
ible with different object detectors, including YOLO and SSD. Such
compatibility helps take advantage of advancement of detection
algorithms and allows users to change the object detector easily
without re-designing the whole fusion model.

3.3 Radar-Based Object Tracker

The image-based object detector may fail to confidently generate
any box under harsh environments when the camera suffers sig-
nificant performance degradation due to darkness, poor visibility
or bad weather conditions. In such a case, to ensure that our sys-
tem can still generate desirable detection results using the radar
point cloud data, we propose a radar-based object tracker. We note
that a similar approach is adopted in [38] for radar point cloud
tracking. However, we extend the tracking object from points to
3D boxes and enable the automatic 3D box size estimation, instead
of generating predefined fixed-size bounding boxes.

As showed in Figure 4, in a frame, the mmWave radar data is
a set of points, where each point is represented by a 4-d vector
composed of coordinates on x (left to right), y (up to down), z (back
to forth) axis and the radial velocity (the velocity along z-axis),
respectively. For clarity, we denote the i th point by:

pi = (xXi,yi,zi,0;) €RY (1)

Then the workflow to generate box proposals from the radar
point cloud is as follows.

3.3.1 Point Cloud Clustering. Signals from clutter and noise can
hugely contaminate radar point cloud and trigger undesirable false
positive points. Therefore, we use DBSCAN [10], a density-based
clustering method, to identify foreground objects from the clutter.
Our intuition is that points from foreground objects can group as
clusters, while points from the clutter are usually scattered in low-
density. In addition, unlike K-means, DBSCAN requires no prior
information of the number of clusters, and hence is well-suited for
object detection tasks where the number of objects is arbitrary. We
define the distance between two points as follows, which is used as
the distance metric in DBSCAN for density-connection check:

d(i, j) =ax(xi — xj)* + ay(yi — y;)*+

az(zi — 2j)* + au(v; — v))?

@)

where a = [ax, ay, @z, ay] is the weight vector to balance the
contribution of each element. Here we incorporate velocity infor-
mation during the clustering process because it can help separate
two nearby objects with different speeds, such as when two people
pass by face-to-face.
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The First Stage: Box Proposal Aggregation
A
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The Second Stage: Box Refinement
A
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Figure 3: The system architecture of milliEye. It includes two stages: box proposal aggregation and box refinement. The blue
locks in the diagram mean the weights of these components are frozen during the training on multi-modality dataset, which

will be detailed in Section 3.5.
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Figure 4: Pipelines of radar-based tracking. Each point is as-
sociated with a velocity, represented by the color on it. The
velocity information helps separate nearby objects in DB-
SCAN. Information from previous frames is leveraged to ad-
just the box size and filter out flickering false positive boxes.

3.3.2  Box Estimation for Clusters. After DBSCAN, each point is
labeled by either the index of a cluster or a flag of outliers. After
filtering out outliers, we estimate the center position and the ve-
locity along z-axis of each cluster by averaging the corresponding
value of all points in this cluster. In addition, for each cluster, we
search for the outermost points belonging to it and use these points
to approximate the size of 3D bounding box. The estimated 3D
bounding box of each cluster can be defined by:

®)

where w, h, t are the width, height and thickness of the 3D bounding
box, respectively.

z:=(x, 4,20z, w, h,t) € R

3.3.3 Box Tracking. It is of great significance to exploit the tem-
poral continuity embedded in adjacent frames to further eliminate
the false positive boxes that flicker in frames. Particularly, multiple
boxes can be generated from each frame. To associate multiple
boxes across frames into temporally consistent tracklets, we use
the Hungarian algorithm [19] and take the Euclidean distance be-
tween centers of any two boxes as the matching metric. However,

the associated boxes from adjacent frames can still jitter severely.
We hence use a Kalman Filter to smooth the locations and sizes of
boxes. Specifically, in frame N — 1, assume the Kalman Filter keeps
a state vector s; n—1 for box i:

(4)
In frame N, we first predict the new state vector s : N for box i using

a constant velocity model. Then the Kalman Filter corrects the state
vector slf N tosi N according to the observation z; , whose form

$i,N-1 = [X, Y, 2, Ux, Uy, Uz, W, h, t] € R®

has been introduced in Equation 3:
©)

where K € R%7 is the Kalman gain matrix and H € R” is the
observation model matrix. Note that the state vector is of length
9, while the observation vector is of length 7, because mmWave
radars do not provide the velocity on x and y directions.

If a box fails to associate with any new box in the next frame,
we continue predicting the new state vector using the constant
velocity model. If the association fails successively for Tmax_age
frames, we assume the object disappears and stop predicting.

Si,N = S;’N + K(Z,"N - Hsl{,N)

3.3.4  Projection and Synchronization. The above clustering and
tracking steps generate the 3D bounding boxes under the radar
coordinate and timestamps. To achieve fusion between two sensors,
a uniform coordinate system and timestamp are required. Spatially,
we slice 3D bounding boxes on z-axis and obtain cross-sections.
Then these cross-sections are projected into 2D image. The projec-
tion of each point follows:

<

= -KT

- Q
—_
s
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where K is the 3x3 camera’s intrinsic matrix, and T is the 3x4
extrinsic matrix. (x, y, z) is the 3D location in the radar coordinate
system, and (u, v) is the projected pixel location in the image. As
the relative position of two sensors is fixed, both K and T can be
calculated offline. For temporal synchronization, we associate every
image frame with its nearest radar frame.

3.4 Fusion-Enabled Refinement

In order to exert the occupancy detection capability of radar, while
maintaining the robust image feature extraction performance ob-
tained from large image datasets, we propose a fusion-enabled re-
finement head, which mainly includes three components: a Region-
Based CNN (R-CNN) subnet, a fusion module and an ensemble
module, as showed in Figure 3. The R-CNN subnet performs the
box regression and classification, leveraging the knowledge learned
from abundant image data. The fusion module aggregates the confi-
dence score from two sensing modalities, and the ensemble module
further seeks the wisdom of image-based detector for a more re-
liable prediction. Our key insight is that the fusion and ensemble
module are not exposed to the image feature, thus being appearance-
insensitive and trainable using a small amount of multi-modality
labeled data. We will elaborate on these three components along
with the steps of per-Rol feature extraction in the following.

3.4.1 Per-Rol Feature Extraction. The refinement head takes the
cropped per-Rol feature maps from both image branch and radar
branch as input.

Per-Rol Image Features. We detach the internal features maps
of the image-based detector, and employ a single 1x1 convolutional
layer to construct a Position-Sensitive (PS) score map with 490
channels. Then a Position-Sensitive Region of Interest Align (PS-
Rol Align) layer is used to crop the score map according to the
location of each box proposal. For each Rol, we obtain a 7x7x10
feature map. The detail of PS-Rol Align can be found in [20], which
is beyond the scope of this paper.

Per-Rol Radar Features. Given that radar point cloud is sparsely
scattered in the field of view (FOV) and has uncertain length, it is
difficult to leverage the point cloud directly for spatial pattern ex-
traction. To utilize the powerful spatial feature extraction capability
of convolutional layers, we encode the unstructured radar point
cloud into 2D images through three preprocessing steps: (1) Project
the point cloud into the 2D image coordinate. (2) Calculate the 2D
histogram of the projected point cloud on three channels: the num-
ber of points, mean depth, mean velocity on z-axis. (3) Normalize
the value on each channel into the range of [0, 1]. Through these
steps, we obtain a 3-channel heatmap. This 3-channel heatmap
is then fed into a three-layer CNN to extract occupancy feature
maps, which embeds the probability that the target exists at each
location. An Rol Align layer [14] then crops the occupancy map
and generates the per-Rol radar features, whose size is also 7x7x10.

3.4.2 R-CNN Subnet. Based on previous work [20], we propose
a lightweight R-CNN subnet, whose outputs on confidence score
will be further fused with the information from the radar branch.
Intuitively, this module performs an extra box refinement stage for
the image-based object detector, thereby improving the box local-
ization and classification accuracy. Specifically, we first flatten the
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Table 1: Architecture of the ensemble module.

Layer ‘ Input Size ‘ Output Size
FC (c+1)x2 (c+1)x32
Flatten | (c+1)x32 32(c+1)

FC 32(c+1) 2

Softmax | 2 2

per-Rol image feature map, and then apply a single fully-connected
(FC) layer with 256 channels, followed by two sibling FC layers
for box regression and classification (the regression of confidence
score is also a kind of classification). The outputs are a 4-d vector,
and a (C + 1)-d vector, respectively.

3.4.3 Sensor Fusion. Although the radar point cloud is sparse and
in low-resolution, it can give strong indications of the existence of
objects, which is an important supplement to the confidence score
from the R-CNN subnet. Therefore, we propose a fusion module
to jointly consider two sensing modalities to better estimate the
occupancy information. Specifically, for the per-Rol radar features,
we use two convolutional layers with kernel size 7x7 and 1x1 to
abstract the global representation, which is also the confidence
score from the radar. Then confidence scores from two modalities
are added together and sent into a sigmoid layer for the final score.

3.4.4 Ensemble. As showed in Figure 3, the outputs of the R-CNN
and the fusion module construct a (C+1)-d vector, whose dimension
is the same as the output of the image-based object detector. In order
to incorporate two (C + 1)-d results for a more reliable refinement,
we introduce a learning-based ensemble module, whose detailed
structure is shown in Table 1. The first FC layer fuses the per-class
information from two inputs, and the second FC layer captures
the global correlation among classes. The final softmax layer out-
puts a 2-d vector (Pforeground’ Pbackground): forcing the network
to make a decision between the foreground and the background.
User can assign a threshold to Proreground to determine the list of
bounding boxes to keep. Intuitively, a larger inter-category vari-
ance a more consistent classification results between two input
vectors and render a higher output confidence score. Note that in
this module we skip boxes from the radar-based tracker, since there
are no corresponding detection results from the image-based object
detector.

3.5 Training Strategy and Loss Function

milliEye supports separated training of image-relevant and radar-
relevant modules. This feature enables our system to learn robust
and generalizable image features on diverse large image datasets,
while learning how to jointly leverage radar and camera data
through the small multi-modality dataset. We conduct the training
in a three-step manner. First, we train image-based object detector.
Second, we fix the detector and train the R-CNN subnet, using
the same loss function with Faster R-CNN [31]. Since the above
two steps only involve image data, they can be performed on large
image dataset. Lastly, we fine-tune the radar-relevant parts on self-
collected multi-modality dataset using the loss function defined in
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Table 2: A summary of the used datasets.

Dataset ‘ Image ‘ Radar ‘ Illumination ‘ # Frames ‘ # Classes
COCO [22] v X Ordinary-Light 90150 12
ExDark [24] v X Low-Light 7363 12

Ours v v Both 1353 1

the following, with the weights of the image-based object detector
and the R-CNN frozen, as represented by the blue locks in Figure 3.
The objective function that the neural network is requested to
minimize during the fine-tuning (i.e., training stage 3) on the multi-
modality dataset includes two terms. First, the ensemble module
determines whether an Rol should be kept or not, which is a re-
gression problem. Therefore, we use the focal loss [21], which is
defined as:
L —a(1 - p;i)¥ logpi, yi =1 "
Focdl i | = (1= api! log(1 = pi). yi =0
where y; € [0, 1] is the label about keeping or discarding the Rol,
and p; is the predicted confidence score from the ensemble module.
a is the factor to balance the positive and negative samples, and
y is a modulating factor that emphasizes hard negatives during
training. This loss term is only calculated for box proposals from
the image-based detector, since proposals from the radar-based
tracker do not involved in the ensemble module.
Moreover, to force the fusion module to mimic the behavior of
a binary classifier to generate a reliable confidence score about
whether the proposed Rol is a positive instance, we use a binary
cross-entropy (BCE) loss, which is given by:

Lpck,i = —yiloggi ®
where the definition of y; is the same with that in Equation 7, and
qi is the confidence score predicted by the fusion module.

For the sake of training stability, we calculate loss only for posi-
tive and negative samples, whose IoU with ground truths are larger
than 0.7 or smaller than 0.3 respectively. To balance the multi-task
training, the final loss is a weighted sum of the above two terms:

L= Z (1(i € img) - Lrocal,i + ALBCE, 1) O]

i€posUneg

4 EVALUATION

In this section, we conduct extensive experiments to demonstrate
the performance and advantages of milliEye.

4.1 Experimental Settings

4.1.1 Datasets. The experiments involve three datasets in total.
For the sake of clarity, we summarize them in Table 4.1 and show
some example images in Figure 5.

Microsoft COCO (COCO). COCO [22], released in 2014, is a large-
scale object detection, segmentation, and captioning dataset. With
more than 200K labeled images, 1.5 million object instances and
80 object categories, COCO has become one of the most popular
benchmark datasets for the object detection task. COCO mainly
includes images under normal illumination. Although there are
565 low-light images in COCO, they accounted for only 0.23% of
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Figure 5: The first row are example images taken from
COCO [22] and ExDark [24]. The second row presents exam-
ple frames from our collected dataset, from ordinary-light
scenes and low-light scenes, respectively. From the bottom-
left image, we can observe the multi-path effect caused by
the radar signal reflected by the wall, which generates many
false-positive points (colored in brown).

the whole dataset, thus the influence is ignorable. In this paper, to
make the categories consistent with ExDark, we only use a 12-class
sub-dataset of COCO, which contains 90150 images in total.
Exclusively Dark Image Dataset (ExDark). ExDark [24] is a
dataset composed exclusively of low-light images. It has total 7363
poor-illuminated images collected in both indoor and outdoor
scenes. Labels are annotated in the bounding-box level and im-
age level. The 12 categories contained in this dataset is exactly a
subset of the 80 categories of COCO. Images on these 12 categories
are distributed relatively evenly, with each category accounting for
7% ~ 11% of the total number of frames.

Self-Collected Dataset. We collect a single-class human detection
dataset. During the experiment, we let volunteers walk randomly
in front of the sensors'. Figure 6(a) shows the sensor suite used
for data collection, where both the radar and camera are fixed on a
carrier board and set to the sampling frequency of 20Hz. We sample
key frames at 4Hz and finally obtain 1353 frames of images and
radar data. We annotate every image key frame with 2D bounding
boxes. To encompass diverse configurations, we collect the data in
7 different places including office rooms, corridors, parking lots and
semi-open platforms in two buildings. As showed in Figure 6(c),
each frame contains 1 to 4 people. Two illumination levels are evenly
distributed among the dataset. Since our dataset is small-scale, in
the experiment, we follow a 5-fold cross validation paradigm, as
demonstrated in Figure 6(b), where we take the average of five trails
as the reported results. A key principle we follow in dividing them
into 5 folds is to guarantee that data in different folds are collected
in different places to demonstrate generalization.

4.1.2  Implementation. The first two training stages introduced
in Section 3.5 are conducted on the mixed dataset of COCO [22]

IExperiments that involve humans are approved by the IRB of authors’ institution.
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Figure 6: (a) We use a USB 2.0 camera (the black module) and
a commodity 60-64GHz mmWave radar TI IWR6843 (the
red module) for data collection. (b) The blue parts denote
the training data and the yellow parts denote the test data.
For each illumination level, the sub-datasets are divided five-
fold. During evaluation, we average the results of five trails
as the final results. (c) The distribution of our dataset on illu-
mination levels, people number and data collection places.

and ExDark [24]. The third training stage is conducted using our
multi-modality dataset. Regarding the choice of hyper-paramters
during the training, we use Adam optimizer with a 1e™* initial
learning rate and batch size of 32. The y in the focal loss is set
to 2 as recommended in [21], and « is set to 0.75 to balance the
contribution from positive and negative samples. We manually
choose the balancing factor A of the final loss function to make two
terms in the same order of magnitude at the beginning of training.
The NMS threshold is chosen to be 0.5 for all experiments. As for
the weight vector used in the DBSCAN, we choose @ = [1,1,3,1]
in our experiments.

4.2 Evaluation Metrics

4.2.1  Precision, Recall and F1 Score. The precision and recall are
defined as:
Precision = _Ir . Recall = _Ir (10)
TP + FP TP+ FN
where TP, FP, FN are true-positives, false-positives and false-
negatives respectively. The attribute of true or false of the sample is
determined by its IoU between ground truth boxes, which is defined
as JoU = %. For instance, with IoU threshold of 0.5,
if the IoU between the sample box and any same-class ground truth
box is larger than 0.5, the sample is then considered as a true one.
The F1 score is defined as F1 = m%, namely, the
harmonic mean. F1 score is usually used for depicting whether the

model achieves a good trade-off between the recall and precision.
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Figure 7: Left: the architecture of Tiny YOLOv3. Right: the
naive deep fusion baseline used for performance compari-
son, which shares the same head design with Tiny YOLOv3.
The blue lock means the weights are frozen.

4.2.2 mean Average Precision (mAP). For the object detection task,
the mAP is a frequently-used metric to evaluate the performance
of the detectors [11, 22]. mAP is the mean of per-class AP. To
calculate the AP, we first rank the output boxes in descending order
according to their attached confidence scores. Next, we compute
the precision-recall (P-R) curve from the ranked boxes. Specifically,
at the start, the top-1 box (i.e., the box with the highest confidence
score) is taken to compute precision and recall, while in the k* h
step, top-k boxes are taken and so on. In this way, pairs of precision
and recall are obtained, which forms a P-R curve. The AP is then
an approximation of the area below the P-R curve.

Notably, the mAP has a negative correlation with the confidence
threshold because a higher confidence score truncates the P-R curve
earlier and AP depends on the area below the P-R curve. As a
result, a common practice is to set the confidence threshold as
small as possible (e.g., 0.001) to maximize the mAP upper-bound.
However, a very low confidence threshold like 0.001 will cause an
intolerable number of false positives and is inapplicable to real-
world applications. Instead, a moderate confidence threshold is
often used to balance the recall and precision. Therefore, we may
test the mAP and F1 score under different confidence thresholds to
gauge the overall performance of the model.

4.3 Experiments on Radar-Camera Dataset

4.3.1 Baselines. We consider the following competing methods as
baselines.

YOLO-Mixed. As a lightweight version of YOLOv3, Tiny YOLOv3
is especially suitable for mobile devices. To let the detector learn
both day-time and night-time features, we train the Tiny YOLOv3
on the mixed dataset of COCO and ExDark, and name this baseline
YOLO-Mixed. Since the category of our dataset (i.e. the person) is
included in the 12 categories of COCO/ExDark, we can directly take
YOLO-Mixed and test it on our collected dataset. This baseline also
acts as an ablated model of our proposed milliEye. For YOLO-Mixed,
only image data is used during the inference.

Naive Fusion. Recent methods on deep camera and radar fusion
usually follow an end-to-end paradigm. In [3], radar and image
data are directly fed into a CNN and the fusion is achieved by the
concatenation operation. As a baseline, we follow this idea and
design a naive deep fusion detector whose architecture is shown
in Figure 7. It is similar to Tiny YOLOvV3 except for an additional
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Figure 8: The mAP of milliEye and three baselines. The gray curves show the F1 scores of the image-based object detector
(i.e., Tiny YOLOv3). X-axes represent the confidence thresholds set to the imaged-based object detector. Note that the range of

y-axes of sub-figures are different for better visualization effect.
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Figure 9: The mAP of milliEye and two baselines when the image-based object detector is changed to SSD.

radar branch and the corresponding concatenation operation. Since
our collected dataset is small-scale, we follow a transfer learning
paradigm by initializing the weights of image feature extraction
layers with YOLO-Mixed, and freezing those weights during the
fine-tuning on our collected dataset, as Figure 7 shows.

Refinement. This model combines YOLO-Mixed and the entire
fusion-enabled refinement head, but does not include the radar-
based tracker. As the ablated version of milliEye, it aims to demon-
strate the effectiveness of radar information in the refinement head.

4.3.2  Overall Performance. Figure 8 summarizes the overall per-
formance of competing models on our dataset. As can be seen, the
performance of naive fusion is significantly inferior to the other
three methods. Although we already fixed the weights of image
extraction layers for the naive fusion, the detection head which
involves lots of image features still requires the training on our
collected multi-modality dataset. Therefore, it has limited generaliz-
ability and fails to adapt to the test scene using the training data®. In
contrast, YOLO-Mixed has high generalizability and achieves much
higher mAP because it is trained on both day-time dataset COCO
and night-time dataset ExDark, whose scales are much larger than
ours, showing the importance of taking advantage of well-trained
image-based object detectors.

Under ordinary light conditions, YOLO-Mixed is already satis-
factory since our dataset is of low difficulty regarding object size,
density and diversity. Correspondingly, the benefit of radar is not

2Qur 5-fold cross-validation ensures the training set and the test set are collected
in different places

prominent. However, on the low-light sub-dataset, our proposed
method outperforms the YOLO-Mixed by a large margin with the
help of radar. Specifically, when the IoU threshold is low (e.g., 0.5),
the majority of improvements are attributed to the radar-based
tracker, meaning that the radar-based tracker picks up some ground
truth boxes neglected by the image-based object detector, although
not very accurate in position. When we impose a stricter require-
ment on the box positions (i.e., a higher IoU threshold 0.7 is set),
the refinement head achieve higher improvements, validating the
effectiveness of refinement head on box position adjustment. More-
over, as the confidence threshold raises, fewer candidate bounding
boxes will be yielded by the image-based detector, leading to greater
improvement from the radar-based tracker, as represented by the
height differences between the red and green bars.

In practice, users may choose a medium confidence threshold to
balance the recall and precision. According to the F1 score curves,
a proper confidence threshold should be around 0.2, under which
our proposed milliEye improves the mAP of YOLO-Mixed by 5.5
and 3.0 percent under IoU thresholds of 0.5 and 0.7, respectively. To
sum up, the naive fusion method exhibits poor generalizability and
adaptability when the training data is insufficient. This shortcom-
ing hinders its application in practical scenarios. On the contrary,
our proposed approach can benefit from abundant diverse image
datasets and is highly adaptive to deployment scenes even only a
small amount of multi-modality training data is available.

4.3.3 Compatibility to Another Object Detector. We investigate
the compatibility of milliEye on another lightweight image-based
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object detector, the VGG16-based SSD-300 [23, 33]. We reproduce
the experimental settings in Section 4.3.2 except change the Tiny
YOLOV3 to SSD. Particularly, we consider two baselines: the SSD
trained on the mixed dataset on COCO and ExDark, named the
SSD-Mixed; the ablated version of milliEye with the radar-based
tracker removed, named the Refinement. The results in Figure 9
exhibit similar patterns with Figure 8. The mAP improvement is up
to 2.9 percent for low-light scenes when the confidence threshold
is 0.2, showing that milliEye can provide considerable performance
boosts for different image-based object detectors, especially under
low-light illumination conditions.

4.4 Experiments on COCO and ExDark
Datasets

In the following, we validate the effectiveness of the refinement
head when there are only images as inputs. As introduced in Section
4.1.1, COCO and ExDark are benchmark image datasets with high
diversity and low inter-category bias. Testing on them enables us
to minimize the deviation brought by the biased dataset, thus to
focus on the performance and functionality of the model itself. As
there is no radar data in COCO and Exdark datasets, we slightly
modify the architecture of milliEye by removing the radar feature
extraction branch as well as the fusion module, while retaining
the ensemble module. YOLO-Mixed, which has been introduced in
Section 4.3.2, is again taken to be a baseline. For comparison, we
train a refinement head also on the mixed dataset, and use YOLO-
Ref to denote the combination of YOLO-Mixed and the refinement
head. Besides, Tiny YOLOvV3 trained only on COCO and only on
ExDark are used as additional two baselines.

In Table 3, we present the mAP of 12 categories that both the
COCO and Exdark include. Within our expectation, YOLO-Mixed is
superior to YOLO-COCO and YOLO-ExDark due to more training
data. On both ExDark and COCO test sets, the refinement head
improves the original YOLO-Mixed. Specifically, we observe that
the improvements are most prominent when a medium confidence
threshold is given, which fits the needs for a threshold in real world
application. For example, in Table 3(a), the improvement is up to
2.4 percent when the threshold is 0.1. Since YOLO-Ref performs the
refinement based on the box proposals provided by YOLO-Mixed,
YOLO-Ref and YOLO-Mixed would have the same recall under
the same confidence threshold®. We also plot the P-R curves in
Figure 10. As can be seen, when the confidence threshold is 0.1,
the refinement head raises the whole curve of YOLO-Mixed-0.1. To
sum up, we validate that on both the ordinary-light dataset COCO
and the low-light dataset ExDark, the refinement head is conducive
to more accurate object detection.

4.5 Robustness to Environmental Dynamics

4.5.1 Confidence Scores from Two Modalities. To quantitatively
analyze how the importance of two sensors shift under different
illuminations, we calculate the average confidence scores from two
sensing modalities over the whole dataset, which are represented
by the two solid green squares in the fusion sub-module in Figure
3. As can be seen in Table 4, both the radar and the camera are

3No confidence threshold is set to the refinement head during the test
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Table 3: mAPs of competing approaches: YOLO-ExDark,
YOLO-COCO, YOLO-Mixed and YOLO-Ref (YOLO-Mixed +
Refinement Head). We also calculate the improvement from
YOLO-Mixed to YOLO-Ref for convenient comparsion. The
IoU threshold is set to 0.5.

(a) On ExDark Test set
Conf. Thresh. | 0.001 [ 0.01 [ 005 [01 [02 [03 [o04 [05

YOLO-ExDark | 45.1 | 44.4 | 423 | 399 | 34.7 | 29.7 | 24.0 | 18.9
YOLO-Mixed | 49.0 | 485 | 46.4 | 43.7 | 38.2 | 31.6 | 253 | 185
YOLO-Ref 50.9 | 50.8 | 48.8 | 46.1 | 40.1 | 32.9 | 26.1 | 18.9
Improvement | 1.9 2.3 2.4 2.4 1.9 13 0.8 0.4

(b) On COCO Test set
Conf. Thresh. | 0.001 [ 0.01 [ 0.05 [ 0.1 |02

YOLO-COCO | 37.6 | 37.2 | 35.0 | 32.6 | 26.7 | 21.3 | 16.6 | 12.4
YOLO-Mixed | 37.9 37.5 | 355 | 32.7 | 274 | 224 | 174 | 13.2
YOLO-Ref 39.7 | 39.6 | 37.9 | 34.8 | 28.8 | 23.3 | 17.9 | 134
Improvement | 1.8 2.1 2.4 2.1 1.4 1.1 0.5 0.2
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Figure 10: In the legend, numbers in the suffixes are confi-
dence thresholds applied to the image-based object detector.
The curve of YOLO-Mixed-0.1 almost overlaps with YOLO-
Mixed-0.001 except an earlier stop at the position of the blue
square. The IoU threshold is set to 0.5 (best zoomed-in).

good at suppressing negative samples, on which the generated con-
fidence scores only show slight differences. However, with respect
to positive samples, confidence scores from the camera are hugely
influenced by the illumination, while confidence scores from the
radar keep stable regardless of light conditions. As a result, the cam-
era dominates the confidence in ordinary light conditions, while
radar plays a more vital role in low light conditions, demonstrating
milliEye’s robustness to different illuminations. Some visualization
results of the radar information are presented in Figure 11. We can
observe that regardless of the illumination conditions, the radar
feature maps provide robust information about the occupancy of
objects, which is coherent with the fact that confidence scores from
radar are almost equivalent in ordinary-light and low-light scenes.

4.5.2 Robustness in Challenging Scenarios. Our low-light sub-dataset
also includes a portion of data collected under extreme dark scenes,
where the function of the camera is greatly hindered. To annotate
them, we lift the exposure and the brightness as much as possible
using image processing software to make objects detectable by
human eyes. The testing mAP results are showed in Table 5. When
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Table 4: Average Confidence scores from two sensing modal-
ities under different illuminations.

Samples | Positive: IoU>0.5
Light | Ordinary ‘ Low

Negative: IoU<0.5
Ordinary ‘ Low

Camera 0.808 0.465 0.083 0.059

Radar 0.580 ‘0.585 0.097 ‘0.097

Figure 11: From top to bottom: visualization of images, radar
point cloud (before embedding and CNN extraction) and the
radar feature maps (after CNN extraction).

Table 5: mAP of our proposed milliEye under extreme dark
scenes. The IoU threshold is set to 0.5.

Conf. Threshold | 0.01 [ 005 [ 0.1 [ 02 | 03 [ 04 [ 05

YOLO-Mixed 80.6 | 75.7 | 70.6 | 63.0 | 50.2 | 40.4 | 31.7
Ours: milliEye | 83.5 | 81.2 | 78.6 | 74.1 | 67.2 | 60.8 | 56.0
Improvement 2.9 5.5 8.0 | 11.1 | 17.0 | 20.4 | 243

5

o

Figure 12: Qualitative results under very poor illumination
conditions. The yellow boxes are results of our proposed
milliEye and the white boxes are ground truth boxes. The at-
tached numbers represent the predicted confidence scores.

choosing a confidence threshold of 0.2, which is a good balance
between the precision and recall, the improvement of mAP is up to
11.1 percent, demonstrating that our milliEye greatly enhances the
image-based YOLO-Mixed under challenging environments. Some
qualitative results are exhibited in Figure 12. As can be seen, with
the help pf radar, milliEye is able to provide correct bounding boxes
even the objects are almost invisible due to darkness.

4.6 System Efficiency

4.6.1 Model Size and FLOPS. We list the number of parameters
and the calculated FLOPs in Table 6. As shown, the total amounts of
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Table 6: Amount of parameters and float operations (FLOPs).
Details of the last three sub-modules are in Figure 3.

milliEye
Tiny Radar Feature | Image PS | Refinement
YOLOv3 | Maps Genera- | Score Maps | Head
tion Generation
Params | 8.7M 0.19M 0.13M 0.15M
FLOPs | 5.45B 0.19B 0.17B 0.14M x #(Rol)

Table 7: Runtime analysis (mean + std) on different plat-
forms. The unit is millisecond (ms) per-frame.

‘ Tiny YOLOvV3 ‘ milliEye

Jetson TX2
Desktop PC

57.6 + 2.1
9.8 £3.2

74.4 £ 3.7
142 £ 4.1

the parameters and the FLOPs of three additional modules are one
order of magnitude smaller than those of Tiny YOLOv3, a compact
image-based detector, let alone others like YOLOv3, whose FLOPs is
up to 65.3B. Therefore, our proposed method incurs negligible extra
compute overheads upon the existing image-based object detectors,
like Tiny YOLOV3.

4.6.2 Execution Latency. In the last experiment, we investigate the
execution latency of milliEye on two different platforms: the Nvidia
Jetson TX2 and a desktop PC with a Xeon Gold 5117 CPU and
a NVIDIA RTX2080 GPU. We implement the whole model using
PyTorch on Ubuntu. During the test, we set the batch size to be 1 to
mimic the inference on stream data. As shown in Table 7, milliEye
incurs about 30% longer run time than Tiny YOLOv3. Considering
that the extra FLOPs are less than 1/10 of the FLOPs of Tiny YOLOv3,
we believe this portion of 30% can be reduced when a more powerful
image-based object detector is used or some advanced acceleration
techniques are applied to make the “fragmental” operations in the
refinement head more efficient. In general, milliEye maintains the
high processing speed of Tiny YOLOv3, and achieves real-time
performance on embedded platform TX2 (>13 fps).

5 RELATED WORK

Cross-Domain Object Detection. Fully supervised object detec-
tors like SSD [23], YOLO[30] and RetinaNet [21] have achieved
great success in recent years. However, for new scenes, the large
quantities of instance-level annotations they need are usually un-
available. To this end, several unsupervised cross-domain object
detection methods have been proposed. Inoue et al. [15, 32] use
pseudo-labeling, where a subset of the object proposals are selected
and used to re-train the original model. Chen et al. [6] add a domain
discriminator behind original Faster R-CNN, forcing the original
detector to learn domain-invariant features. Khodabandeh et al.
[18] formulate the domain adaptation as a problem of training with
noisy data which enables the detector to improve itself through
high confidence predictions and tracking cues. Our method pro-
vides another approach for the cross-domain object detection. With
the help of a domain-invariant sensing modality (e.g., the mmWave
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radar), we can boot the performance of image-based object detec-
tors, whose predictions in turn can be used as new training data for
the image-based detector thus achieving domain adaptation [4, 5].
mmWave Radar Sensing. mmWave radars have been increas-
ingly adopted in IoT applications. For example, leveraging the accu-
rate range sensing ability of mmWave radars, [29] proposes Osprey,
a tire wear sensing system via measuring the distance difference
between the tread and the groove in real-time. Jiang et al. achieve
micrometer-level vibration measurements with mmWave radar
[17, 35]. Leveraging the penetrability of radar signals, through-fog
robust indoor mapping and high-resolution imaging are achieved
[13, 25]. Radar-based multi-person identification systems are pro-
posed in [38], where the radar could be hidden behind the furniture
for the purpose of aesthetics and non-intrusion. Zhao et al. [36, 37]
demonstrate the possibility of accurate through-wall human pose
estimation using merely the mmWave radar. Several studies are
also focused on the object detection combining mmWave radars
with cameras [3, 7, 26-28]. However, these fusion solutions im-
pose stringent requirements on both the quantity and quality on
collected data and may fail to adapt to real-world deployment sce-
narios where only a small-scale dataset is available. Our proposed
system addresses this issue by taking advantage of models trained
on large image datasets, and thus is well-suited for applications
that need to process highly dynamic scenes.

6 CONCLUSION AND DISCUSSION

We present milliEye, a lightweight robust object detection system
based on mmWave radar and camera fusion. Via multimodal fusion,
our system is able to improve the performance of off-the-shelf object
detectors, especially in the low-illumination conditions. Moreover,
milliEye has the ability to adapt to new scenes using a small amount
of labeled data compared to naive deep-fusion-based methods. In
terms of modeling, milliEye is compute efficient, making it suit-
able for edge-based real-time using. Our evaluation shows that in
challenging scenarios, milliEye achieves an mAP of 74.1% (com-
pared to 63.0% of Tiny YOLOv3), while only incurring an additional
average delay of 16.8 ms per-frame on Jetson TX2. Nevertheless,
milliEye exhibits some limitations worthy of further study. First, a
natural extension in object detection is from 2D to 3D. The depth
information from the mmWave radar is likely to play a critical role
in fusion-based 3D object detection. In this paper, we encode the
depth information into one of channels of the radar feature maps
for 2D occupancy estimation. In the 3D detection scenario, a more
advanced method to utilize the depth information can be considered.
Second, in our experiments, the point cloud from the radar is not
involved in the object classification. As introduced in Section 2.1,
the generated point cloud via FFT algorithms suffers low angular
resolution, which restricts the perception ability of radars, making
radars unsuitable for classification tasks. However, by leveraging
more low-level data, such as the raw output of Analog to Digital
Converter (ADC), or internal range-azimuth/range-doppler maps,
some fine-grained features can be extracted for classification.
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