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ABSTRACT
Infrastructure-assisted autonomous driving is an emerging paradigm
that aims to make affordable autonomous vehicles a reality. A key
technology for realizing this vision is real-time point cloud registra-
tionwhich allows a vehicle to fuse the 3D point clouds generated by
its own LiDAR and those on roadside infrastructures such as smart
lampposts, which can deliver increased sensing range, more robust
object detection, and centimeter-level navigation. Unfortunately,
the existing methods for point cloud registration assume two clouds
to share a similar perspective and large overlap, which result in sig-
nificant delay and inaccuracy in real-world infrastructure-assisted
driving settings. This paper proposes VI-Eye - the first system that
can align vehicle-infrastructure point clouds at centimeter accuracy
in real-time. Our key idea is to exploit traffic domain knowledge by
detecting a set of key semantic objects including road, lane lines,
curbs, and traffic signs. Based on the inherent regular geometries of
such semantic objects, VI-Eye extracts a small number of saliency
points and leverage them to achieve real-time registration of two
point clouds. By allowing vehicles and infrastructures to extract
the semantic information in parallel, VI-Eye leads to a highly scal-
able architecture for infrastructure-assisted autonomous driving.
To evaluate the performance of VI-Eye, we collect two new multi-
view LiDAR point cloud datasets on an indoor autonomous driving
testbed and a campus smart lamppost testbed, respectively. They
contain total 915 point cloud pairs and cover three roads of 1.12𝑘𝑚.
Experiment results show that VI-Eye achieves centimeter-level accu-
racy within around 0.2s, and delivers a 5X improvement in accuracy
and 2X speedup over state-of-the-art baselines.
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1 INTRODUCTION
Autonomous driving has the potential of revolutionizing trans-
portation mobility and safety. However, the mission-critical nature
of autonomous driving has resulted in increasing complex and
expensive vehicular systems, which pose significant barriers for
adoption in practice. An emerging paradigm that aims to address
this challenge is infrastructure-assisted autonomous driving, where
intelligent roadside infrastructures such as lampposts equipped
with computing and sensing units provide autonomous vehicles
various real-time services such as object detection and dynamic
route planning. A key technology for such a paradigm is real-time
data fusion of sensors, e.g., LiDARs, cameras, radars, of vehicles
and infrastructures. One of the most widely used sensors adopted
by mainstream autonomous driving platforms [1, 2] is LiDAR, due
to its precise and long-distance range detection capability. Recent
advances in LiDAR technologies have led to a range of affordable
off-the-shelf products that can be deployed on vehicles as well as
roadside infrastructures [4]. In this work, we study the problem of
aligning/registering the two 3D point clouds generated by LiDARs
on vehicle and infrastructure to form a single integrated point cloud.
Such an approach is a key enabling technology for infrastructure-
assisted autonomous driving since it allows the vehicle to directly
take advantage of the additional LiDAR sensing capability for in-
creased sensing range, more robust object detection/tracking, route
planning, localization, and navigation.
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Although there exist methods for aligning two point clouds, they
are not designed for real-time vehicle-infrastructure point cloud reg-
istration and yield unsatisfactory performance in delay, robustness
and accuracy. Classic registration methods [6, 10, 12, 38] require
similar positions and large overlap between point clouds to achieve
good registration performance [11, 15, 27]. Similarly, several lat-
est registration methods [31, 50] assume the two point clouds are
scanned from the same vehicle within a short interval of time, and
hence have very similar perspective and large overlap. Moreover,
most current registration methods [9, 40, 46, 51] focus on aligning
small-scale synthetic data (e.g., ModelNet [48]) in indoor scenes.
These existing solutions incur prohibitively high computation over-
head [19] and poor accuracywhen applied to infrastructure-assisted
traffic scenarios. First, vehicle- and infrastructure-mounted LiDARs
have significantly different field of views, which also change dy-
namically due to the movement of vehicle. Second, each point cloud
scanned in real-world traffic scenes contains tens or even hundreds
of thousands of points with significant variations in the point den-
sity, noise, and outliers. Yet, in order to support high-precision
autonomous driving, two point clouds need to be aligned with the
centimeter-level accuracy [29].

This paper proposes VI-Eye - the first system that can accu-
rately align vehicle-infrastructure point cloud pairs in real-time
for supporting various autonomous applications. Our key idea is
to exploit domain knowledge in traffic scenarios to recognize a
small number of key semantic objects and utilize them to align
vehicle-infrastructure point cloud pairs. Specifically, VI-Eye first
segments point clouds on both vehicle and infrastructure and de-
tects several key semantic objects, including road, lane lines, curbs,
and traffic signs. VI-Eye then employs a novel saliency point extrac-
tor to find key points from these semantic objects by leveraging
their inherent regular geometries. Next, motivated by the fact that
ground is the largest plane in traffic scenes, VI-Eye performs ground
registration using semantic objects on the ground to obtain strong
prior knowledge for more accurate alignment. Finally, VI-Eye aligns
vehicle-infrastructure point cloud pairs by searching for correspond-
ing saliency point pairs with two proposed heuristics to achieve
real-time registration. VI-Eye offers several key advantages. First,
it allows vehicles and infrastructures to extract the semantic in-
formation from their point clouds independently, which leads to a
highly scalable architecture for infrastructure-assisted autonomous
driving. Second, by taking advantage of the inherent geometric
regularities in semantic objects, VI-Eye can achieve precise and
real-time vehicle-infrastructure registration.

To evaluate the performance of VI-Eye in practice, we collect the
first multi-view LiDAR point cloud datasets, which contain both
the vehicle and the infrastructure perspectives based on an indoor
autonomous driving testbed and a campus smart lamppost testbed,
respectively. They contain total 915 point cloud pairs and cover
three roads of 1.12km. Experiments show that VI-Eye achieves real-
time centimeter-level accuracy with a success rate above 94% in
the real traffic dataset. Compared with state-of-the-art baselines,
VI-Eye achieves 5X improvement in accuracy and 2X speedup.

The rest of this paper is organized as follows. Section 2 introduces
related work. Section 3 presents a motivating case study. In Section
4, we introduce the design of VI-Eye. We discuss the collection of

two datasets and experiment results in Section 5 and 6, respectively.
Section 7 concludes the paper and discusses the future work.

2 RELATEDWORK
Pairwise Point Cloud Registration. The ICP algorithm [10] is
the most commonly used method for pairwise point cloud registra-
tion and has many variants [14, 18, 23, 42, 49]. NDT [12] represents
point clouds by a set of Gaussian distributions for quick alignment.
These two algorithms have been widely applied in the field of robot-
ics [20, 33, 45]. However, ICP works well only when pair of scans
has significant overlapped area (e.g., 90%) and close distance (e.g.,
10m) [28]. Similar to ICP, the performance of NDT also highly de-
pends on similar initial positions between two point clouds [19, 35],
which are not available in traffic scenes as LiDARs on the vehicle
and the infrastructure have significant differences in height and
perspective. Feature-based methods, such as SAC-IA [38], ICL [8],
and FGR [57], first extract features and then identify correspon-
dences to align point cloud pairs. These methods cannot achieve
high precision in traffic scenes, where a large number of repeated
structures, such as building facades and roadside trees, make the
feature correspondence ambiguous.

In the field of computer vision, learning-based registration meth-
ods [9, 40, 46, 51] can achieve good performance on synthetic
datasets like ModelNet [48] or small-scale indoor scenes. How-
ever, they incur high computation overhead in processing large
volumes and irregular point clouds, thus are difficult to be gen-
eralized to outdoor scenes. 3DFeatNet [50] and DeepICP [31] are
proposed for traffic scenarios, but for aligning two point clouds that
are scanned consecutively from the same vehicle perspective. These
two methods can not be directly applied to vehicle-infrastructure
point cloud registration, where the two point clouds are generated
by different sensors with limited overlap.

Vehicle-infrastructure information fusion. Most existing
vehicle-infrastructure information fusion schemes are designed
for fusing high-level application-specific information. The method
in [54] integrates the vehicle positioning in a Road Side Unit (RSU)
camera with the vehicle GPS to help locate the vehicle. Michael et al.
[25] propose to fuse estimations frommultiple roadside sensors and
vehicle onboard state information to achieve trajectory-level fusion.
Siegfried et al. [41] propose to provide the vehicle the object detec-
tion results of infrastructure to enhance its perception capabilities.
Different from these studies, we focus on fusing raw LiDAR point
clouds to enable various autonomous driving applications such as
object detection, route planning, localization and navigation.

3 A MOTIVATING CASE STUDY
In this section, we use a case study to first show the benefits of
vehicle-infrastructure point cloud registration in improving the
sensing range and perceptional performance of vehicles. We then
discuss the challenges and the shortcomings of existing registra-
tion methods. Fig. 1(a) and Fig. 1(b) show a typical scenario of
infrastructure-assisted autonomous driving, where two Livox Hori-
zon LiDARs aremounted on a vehicle (1.5m in height) and a roadside
lamppost (3.5m in height), respectively. Fig. 1(c) and Fig. 1(d) show
the two generated point clouds.
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(c) Vehicle’s point cloud (d) Infrastructure’s point cloud

(a) Vehicle’s perspective (b) Infrastructure’s perspective

3.5m

Figure 1: Illustration of the case study setup. The pointing
direction of each LiDAR is labeled.

Figure 2: Illustration of the benefits of vehicle-
infrastructure point cloud registration. (a) A bird-eye
view of a registration result. (b) A bird-eye view of the
detected objects. (c) A closer look at the point cloud of a
speed limit sign before and after the registration.

We present an example of the registration result in Fig. 2 (a),
which shows that after aligning/registering the two point clouds,
the effective sensing range of the vehicle can be extended from
about 38m (green) to 65m (green+pink). Vehicular perception algo-
rithms such as object detection can thus benefit from the extended
perception field. In Fig. 2(b), more objects (two people and traffic
sign 3) can be detected after registration. Besides, the registration in-
creases the resolution of the original vehicle point cloud, as shown
in Fig. 2(c), where more points lie on the traffic sign 1 after the
registration, making it easier to be detected. These results show
that VI-Eye can effectively improve both the sensing range and
point cloud density 1.

However, vehicle-infrastructure point cloud registration faces
several challenges in practice. First, there often exists significant
perspective gap and little overlap between vehicle-infrastructure
point cloud pairs. Existing point cloud registration methods can
achieve accurate alignment only for point clouds with a small ro-
tation [37] and significant overlap [11]. For example, it is shown
[17, 27] that the state-of-the-art point cloud registration methods

1The results in Fig. 2 are based on two solid-state LiDARs with narrow FoV. Mechanical
LiDARs that usually have 360° FoV can also benefit from the registration because of
the improved effective sensing range and point cloud resolution.

require the point cloud pair to overlap by at least 30%, which is
often not the case in the vehicle-infrastructure point cloud reg-
istration due to the significant difference in the field of views of
sensors. Fig. 1 shows that there exist huge differences in scanning
perspectives (indicated by yellow arrows) and scanning heights of
the LiDARs on vehicle and infrastructure. Therefore, it requires
significant rotation and translation to align the point cloud pairs.
Moreover, overlapping sensing area of the vehicle and infrastruc-
ture changes greatly due to the movement of the vehicle, which
brings great challenges to vehicle-infrastructure point cloud reg-
istration. We also measured the registration errors of four widely
used point cloud registration methods on our real traffic dataset
(see Section 6.4). It shows that they result in significant errors (up
to around 10m) due to the significant perspective gap and little
overlap between vehicle-infrastructure point cloud pairs.

Second, to support various real-time autonomous driving ap-
plications, vehicle-infrastructure point cloud registration needs to
process large amounts of data in a limited time. Consider a real
traffic scenario, where a pedestrian obscured by the roadside bushes
is about to cross the road. The vehicle speed is 48km/h, the corre-
sponding braking distance is about 14m [47], and the distance from
the pedestrian is 20m. We assume the LiDAR point rate is 1333,000
points/s, and the scanning frequency is 10Hz, which are consistent
with the settings of mainstream autonomous driving bnechmarks
like KITTI Dataset [26]. In this case, to allow the vehicle to take ad-
vantage of vehicle-infrastructure point cloud registration and avoid
a traffic accident, the registration and the subsequent pedestrian
detection need to be completed within (20 − 14)/48 = 0.45𝑠 . The
run time of the state-of-the-art 3D object detection algorithm is
around 0.1s [43]. Therefore, two point clouds containing 266,600
points need to be aligned within 0.35s, which does not account for
other delays such as communication between the infrastructure
and the vehicle. We list the time complexity of three widely used
registration algorithms and their run time on KITTI Dataset us-
ing a desktop PC with an Intel i7 2.90GHz CPU and an NVIDIA
RTX2060Super GPU in Table 1. It shows that these methods have a
complexity of at least 𝑂 (𝑛𝑙𝑜𝑔𝑛) where n is the number of points in
a point cloud, and running time of at least 6s, which cannot meet
the real-time requirements of autonomous driving.

Table 1: Time complexity and run time of three widely used
point cloud registration algorithms.

Algorithms 4PCS [7] ICP [10] SAC-IA [38]
Time Complexity 𝑂 (𝑛2) 𝑂 (𝑛𝑙𝑜𝑔 (𝑛)) 𝑂 (𝑛 + 𝑛𝑙𝑜𝑔 (𝑛))

Run time on
KITTI dataset (s) 15.25 6.86 18.92

4 DESIGN OF VI-EYE
4.1 Approach Overview
Point cloud registration or alignment is the process of finding a
transformation between two point clouds so that the overlapping
portion matches each other. Given the infrastructure point cloud
and the vehicle point cloud, our task is to find a transformation
T ∈ 𝑆𝐸 (3) that aligns the two point clouds. 𝑆𝐸 (3) is the set of all
transformation matrices consisting of a rotation matrix R and a



ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Yuze He, Li Ma, Zhehao Jiang, Yi Tang, and Guoliang Xing

translation vector t. We assume that smart infrastructures have suffi-
cient computing resources to run mainstream deep learning models.
Our approach can support two different vehicle-infrastructure data
fusion modes. First, once registered, the two point clouds can be
easily fused by the vehicle to form a unified point cloud. Second,
the transformation between infrastructure and vehicle derived by
our approach can also support fusing abstract information, such
as objects’ bounding boxes. Compared with raw point cloud fu-
sion, abstract information fusion reduces communication overhead
between infrastructure and vehicle. However, abstract representa-
tions are usually pre-defined and application-specific, which can
only assist limited on-vehicle applications, whereas fusing the raw
data provides vehicles with a more fine-grained and complete point
cloud, which can be used to enhance all kinds of point cloud-based
applications. For instance, the complete point cloud are vital to ap-
plications like point cloud segmentation for comprehensive scene
understanding and path planing that requires precise scene struc-
ture. In the rest of this paper, in order to evaluate the performance
of our approach, we assume applying registration to raw vehicle-
infrastructure point clouds. VI-Eye can also be used to register point
clouds of two individual vehicles as long as there exists a certain
overlap between two point clouds. By registering point clouds of
connected vehicles, a vehicle can perceive the unseen/occluded ar-
eas through the point clouds of nearby vehicles. Moreover, through
the point cloud registration, a vehicle can also obtain the precise
positions of nearby vehicles, which is critical for autonomous driv-
ing.

We proposeVI-Eye, an approach that accurately aligns the vehicle-
infrastructure point cloud pairs in real-time. The framework of
VI-Eye is shown in Fig. 3. The core idea behind VI-Eye is to lever-
age the domain knowledge in autonomous driving applications to
shrink the registration domain from the entire traffic scenario to
carefully selected semantic objects including road, curbs, lane lines,
and traffic signs, and then extract saliency points, which refer to
the critical points clearly distinguishable from other points. VI-Eye
has two key advantages. (i) It leverages semantic objects that are
static and common objects in traffic scenarios, thus are robust to
dynamic scenes and can be easily recognized. Moreover, Ground-
related objects provide strong prior knowledge for more accurate
alignment. (ii) It allows vehicles and infrastructures to extract the
semantic information from their point clouds independently, which
leads to a highly scalable architecture for infrastructure-assisted
autonomous driving.

To fully utilize semantic information, we propose a new approach
to extract saliency points. Different from existing 3D key point
detection methods, which detect key points uniformly in the entire
point cloud and tend to generate a large number of key points, we
take advantage of the inherent geometric characteristics of lane
lines and traffic signs to extract only few but effective saliency
points at per-instance level. The extracted points, such as vertices
and centers of semantic objects are geometrically important and
also strongly interpretable. Moreover, the small number of saliency
points also significantly reduces the search space of the subsequent
registration module, thus greatly speeding up the whole process.
Lastly, motivated by the observation that ground is the largest plane
in the traffic scenario, we pre-estimate the rotation R to further
accelerate the registration.

Specifically, VI-Eye consists of four components. We first apply
semantic segmentation to remove unimportant points and segment
remaining points into instanceswith semantic labels on both vehicle
and infrastructure, respectively. We divide these semantic labels
into two categories, one with regular shape, including traffic signs
and lane lines, the other is ground-related, including road, curbs and
lane lines. Instances with regular shapes are then fed into saliency
point extractor to extract saliency points. In parallel, the ground
registration module exploits the ground-related semantic objects to
find the rotation matrix between the vehicle-infrastructure point
cloud pairs, which serves as a registration prior and will be used to
speed up the registration module. Lastly, the Registration module
takes the saliency points in both ends as well as the rotation matrix
and estimates the transformation T using a RANSAC [22]-based
algorithm. We also propose two heuristics that greatly accelerate
this process.

4.2 Point Cloud Semantic Segmenter
We employ the CNN-based point cloud semantic segmentation
algorithm RangeNet++ [34] to segment the point clouds on both
infrastructure and vehicle. All the objects in the point cloud are
segmented, including both dynamic objects and static objects. The
semantic objects that are not helpful for registration will be auto-
matically excluded, such as dynamic objects like cars and pedes-
trians. Only four categories of static semantic objects, road, curbs,
lane lines and traffic signs are left for further processing, which
ensures a robust registration performance despite the traffic dy-
namics. RangeNet++ leverages the working principle of LiDARs
to project the 3D point cloud P = {p0, p1, ...} to a cylinder plane
and obtain a 2D range image and use CNN to segment the image.
Semantic labels are then projected back and assigned to each 3D
point. RangeNet++ is designed for Velodyne HDL-64E LiDAR and
assumes a 360° FoV. To extend it to LiDARs with different FoVs,
we redefine the mapping Π : R3 ↦→ R2 that converts each 3D
point p𝑖 = (𝑥,𝑦, 𝑧) to a pixel coordinate (𝑢, 𝑣) in the range image
as follows:(

𝑢

𝑣

)
=

( 1
2 [1 − arctan(𝑦, 𝑥) 𝑓ℎ]𝑤[

1 −
(
arcsin

(
𝑧𝑟−1

)
+ 𝑓𝑢𝑝

)
𝑓 −1

]
ℎ

)
, (1)

where (ℎ,𝑤) is the constant size of the range image. 𝑓 = 𝑓𝑢𝑝 + 𝑓𝑑𝑜𝑤𝑛

is the vertical FoV of the LiDAR, including both the vertical FoV
upward and downward. 𝑓ℎ is the horizontal FoV, and 𝑟 = ∥p𝑖 ∥2 is
the range of point p𝑖 . For the Livox Horizon LiDAR used in this
paper, 𝑓 = 25.1°, 𝑓𝑢𝑝 = 𝑓𝑑𝑜𝑤𝑛 = 12.55°, 𝑓ℎ = 81.7°, and we set
ℎ = 128 pixels,𝑤 = 512 pixels.

After segmentation, we apply Euclidean point cloud clustering
to separate different instances in the same semantic category. Each
instance will be processed independently in the subsequent steps.

4.3 Saliency Point Extractor
The saliency point extractor is designed to extract semantically and
geometrically meaningful points from two categories of semantic
objects: lane lines and traffic signs. The novelty of this module lies
in three aspects: (i) Classic key point detection methods [24, 44, 55]
use features such as normal and curvature to extract corner points,
which may result in a large number of key points that are not
clearly distinguishable from each other. In contrast, VI-Eye uses
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Figure 3: Framework of our vehicle-infrastructure point cloud registration approach
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Figure 4: Design of the Saliency Point Extractor

semantic and primitive features to extract saliency points, which
are strongly distinguishable and descriptive. (ii) Learning-based
3D feature extraction methods [52, 53] usually first convert point
clouds into regular 3D voxels and then use the 3D CNN to calculate
the features. However, voxelization leads to information loss and
its accuracy is affected by the resolution of the 3D grid. VI-Eye only
processes semantically important objects’ point clouds by project-
ing them to different 2D planes, which is more efficient. (iii) Similar
to VI-Eye, several methods [36, 56] also represent the point cloud as
images rendered from one or multiple views before applying image
CNNs to calculate features. However, their performance is greatly
affected by the projection direction, point density, and projected
image resolution. By exploiting traffic domain knowledge, VI-Eye
represents point clouds as multiple 2D binary images and derives
the projection direction for each semantic object, which enables
highly robust registration despite significant variations in point
density and viewpoints of point clouds.

4.3.1 Preprocessing. Themovement of the vehicle may cause “tails”
on the edge of the instance point cloud. We define “tails” as points
that belong to an object but are outside the contour of the object
due to the movement of the vehicle and the scanning delay of the
LiDAR. Moreover, the segmentation may introduce points that do
not belong to the semantic instance. Therefore, preprocessing is
vital towards the robustness of saliency point extraction.

Fig. 5 shows an example before and after applying the filtering.
Specifically, in the first round we fit a plane model P(S) using
least square for each semantic instance S, and filter out points with
distance larger than 5cm from the plane. In the second round we use
𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑅𝑒𝑚𝑜𝑣𝑎𝑙 [39] to further remove sparse outliers
and obtain filtered point cloud S𝑓 .

4.3.2 Converting to binary images. After filtering the point cloud,
we first perform 3D to 2D point cloud projection, which is achieved
by orthogonally projecting point cloud S𝑓 onto the plane P(S)

𝑦
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Saliency pointsBinary image

𝑀(𝐼)

Figure 5: Illustration of preprocessing: first filter the points
outside the plane model P(S) (black circles), and then filter
the outliers that do not belong to the semantic instance (blue
circles).

𝑦
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𝑦

𝑃(S)

3D point cloud 2D point cloud Binary image

splatting

Figure 6: Converting 3D point cloud to binary image: first
project point cloud of each instance S𝑓 to its plane P(S),
then splat projected point cloud S𝑝 to image I.

estimated in the last step, and then remove the 𝑧 coordinate to
obtain 2D point cloud S𝑝 . An illustration of this step is shown in
Fig. 6.

After we obtain the set of 2D points continuously distributed on
a bounded 2D space, we convert them to an image I by splatting
points into a regular rectangular grid (shown in Fig. 6). Each point
(𝑥,𝑦) is splatted into the nearest grid with coordinates (𝑢, 𝑣) by a
mapping Q: (

𝑢

𝑣

)
=

(
[(𝑥 − 𝑥min) /𝛼 + 𝛽]
[(𝑦 − 𝑦min) /𝛼 + 𝛽]

)
(2)

where [·] is the rounding operation, 𝛼 and 𝛽 are used for correcting
the scale and the translation, respectively. 𝛼 indicates the resolution
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of image I, e.g., when 𝛼 = 1000, the resolution of image I is 1mm.
Since most LiDARs have millimeter-level detection accuracy, 𝛼 can
be set to 1, 000 in most cases. 𝛽 indicates the margin of image I,
which is only used for visualization. In principle, 𝛽 can be any
value, which won’t affect the results of VI-Eye. We empirically set
𝛽 = 100, leaving a margin of 100 pixels around S𝑝 . For each mapped
coordinates we set the correspond pixels to 1, which results in a
binary image I.

4.3.3 Primitive fitting. The semantic instances in our problem usu-
ally have regular shapes. We leverage this strong prior by fitting
the binary image I into a regular primitive imageM through con-
nected component analysis. The primitives in this paper refer to
a set of geometries:G = {𝑐𝑖𝑟𝑐𝑙𝑒, 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒}, which covers
the most shapes of objects we concerned. We first decide the best
primitive label by an extent score:

𝑒𝑥𝑡𝑒𝑛𝑡 (I)𝑖 =
A(H(I))

A (P𝑖 (H (𝐼 )))
, 𝑖 ∈ G (3)

whereH(I) is the convex hull of image I, P𝑖 (·) calculates the min-
imum enclosing primitive with label 𝑖 of the convex hull. A(·)
is the area. Extent measures the similarity between the primitive
P𝑖 (H (I)) and the semantic instance’s geometry. We choose the
label 𝑖 that maximizes this score as the primitive, and extract the
vertices and center of P𝑖 (H (I)) as saliency points. The detailed
primitive fitting process is shown in Fig. 7.
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Figure 7: The primitive fitting process that finds the best
primitive for a binary image.

4.3.4 Labeling of the saliency point. Primitive label is an important
categoric feature that can be used for better matching. However, we
observed that there are cases (although rare) where the primitives
fitted on vehicle and infrastructure are different for the same traffic
sign. For example, a speed limit sign may be fitted to a circle on
vehicle but a rectangle on infrastructure, which makes a pair of
salient points fail to match. Another observation is that the center,
different from vertices, yields strong robustness against wrong
primitive fitting. Thus we label each point with two labels (𝑠, 𝑝): 𝑠
is the semantic label, and 𝑝 ∈ G⋃{𝑐𝑒𝑛𝑡𝑒𝑟 }, where 𝑐𝑒𝑛𝑡𝑒𝑟 indicates
that the saliency point is a center point, regardless of which kind of
primitive it belongs to. Finally, we back project the saliency points
to 3D and get set of saliency point S, with each point attached with
two labels.

4.4 Ground Registration
Ground is a unique and strong prior in traffic scenes. By exploit-
ing the ground, we can robustly estimate a rotation matrix that

ℛ

𝑄

𝑀(𝐼)

Figure 8: Ground registration.

accelerates the registration process. Specifically, we focus on the
point clouds of semantic objects on the ground, e.g. road, lane lines
and curbs. On both the infrastructure and the vehicle, we first use
the points on the road R to estimate a plane model P(R). We then
exploit lane lines or curbs to estimate the direction of the road d.
By aligning the normal vectors nI and nV of the ground plane and
the direction vectors dI and dV of the road, which are estimated on
infrastructure and vehicle respectively, we can obtain a rotation
matrix R𝐺 . R𝐺 is an estimation of the rotation transformation that
rotates the infrastructure point cloud to align with the vehicle point
cloud. Now we have eliminated three DoF and only translation
remains ambiguous. Next, we need to match saliency point pairs to
obtain the complete transformation between vehicle-infrastructure
point clouds, i.e., a rotation matrix and a translation vector. The
ground registration process is shown in Fig. 8.

4.5 Registration
We now have the rotation matrix R𝐺 from the ground registration
and two saliency point sets S𝑉 and S𝐼 extracted from the vehicle and
the infrastructure respectively. We adopt the idea from RANSAC
[22] to quickly find the correspondence in S𝑉 and S𝐼 and estimate
T𝐼2𝑉 that aligns the infrastructure point cloud to the vehicle point
cloud. The details are shown in Algorithm 1.

Note that most time consumed in the naive implementation is
counting the number of inliers, which is an O(n) operation. There-
fore, we propose two key extensions to the original RANSAC algo-
rithm to achieve real-time performance. The first extension, namely
two-tier label verification, narrows the search space when guessing
the correspondence. Specifically, for each saliency point p𝑖

𝐼
in S𝐼 ,

we only consider the saliency points in S𝑉 that have the same two
labels as p𝑖

𝐼
, which greatly increases the probability of a correct

guess. Another interesting property of this approach is that, unlike
RANSAC that simply drops the wrong guess, we can benefit from
the failures. When there do not exist any saliency points in SV
that have the same label, e.g. the same object is fitted into different
primitives on vehicle and infrastructure, or the object exists only
in one view, it is guaranteed that no correspondence can be found
for p𝑖

𝐼
. So we can safely delete the saliency points that have the

same label as p𝑖
𝐼
to further reduce the search space in the following

iterations.
The other extension, referred to as early check, aims at terminat-

ing the iteration early to reduce unnecessary computation when
there exists false correspondence. After we randomly guess three
pairs, we quickly check whether the assumption is a valid one by
comparing the similarity of R and R𝐺 , which is an O(1) operation:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (R, R𝐺 ) =
r · r𝐺
|r| · |r𝐺 |

(4)

where r and r𝐺 are vector representations of the rotation matrix R
and R𝐺 . Note that the road direction vectors dI and dV estimated
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Algorithm 1 Extended RANSAC Registration Algorithm
Input: Ground registration: RG, Saliency points in vehicle end: SV,

Saliency points in infrastructure end: SI.
Output: Transformation between the vehicle-infrastructure point

cloud pair: TI2V.
for 𝑛 = 1 to𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚 do
S← Randomly select 3 points from SI;
for each 𝑝𝑖

𝐼
∈ S do ⊲ Two-tier label verification

S′ ← Points in SV with the same labels as 𝑝𝑖
𝐼
;

if |S′ | = 0 then
Remove points in SI with same labels as 𝑝𝑖

𝐼
;

End this iteration and start a new iteration;
else

𝑝𝑖
𝑉
← Randomly select 1 points from S′;

Add (𝑝𝑖
𝐼
, 𝑝𝑖

𝑉
) to base B;

end if
end for
TI2V ≡ [R t] ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑎𝑚𝑡𝑖𝑜𝑛(B);
if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (R,RG) > Y or 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (R,R′G) > Y then

⊲ Early check
Apply transform TI2V to SI, update base B;
Re-estimate TI2V using the new base B;
Count the number of inlier saliency points and
determine whether to end the registration;

else
End this iteration and start a new iteration;

end if
end for

by the infrastructure and the vehicle can either be the same or
opposite in the world coordinate. Therefore, we need to compare
R with both R𝐺 and R

′
𝐺
, and calculate two similarities. R

′
𝐺
is ob-

tained by replacing dI with −dI in Ground Registration. We deem
the correspondence as being correct when either Similarity(R,R𝐺 )
or Similarity(R,R

′)
𝐺
is bigger than a certain threshold Y. If so, the

original RANSAC algorithm is used to count inliers. Otherwise,
the current iteration is ended early. Y is an error tolerance set by
users. When Y is small, the run time of VI-Eye can be short but may
lose some registration accuracy. When Y is large, the registration is
more precise at the price of longer searching time. So Y can be set
to achieve a desirable tradeoff between accuracy and speed.

5 MULTI-VIEW LIDAR POINT CLOUD
DATASETS

We collect two new point cloud datasets with multi-view LiDARs.
The first dataset is collected based on an indoor autonomous driv-
ing testbed, and the second dataset is collected on a university
campus. Unlike existing autonomous driving public datasets, such
as KITTI Dataset [26], Oxford RobotCar Dataset [32], etc., both
of our two datasets contain the point clouds from two different
views: the vehicle’s view and the fixed roadside infrastructure’s
view. We summarize our two datasets in Table 2. For the indoor
dataset, we set up 89 simulated traffic scenarios and collected 445
vehicle-infrastructure point cloud pairs. For the campus dataset, we
collected 470 point cloud pairs, covering three roads with a total

length of 1.12km. In addition, we tagged each point cloud with
semantic labels and provide the ground-truth transformation of
each point cloud pair. The examples of collected point clouds are
shown in Section 6. Below we describe the data acquisition process
of each dataset in detail.

Table 2: Summary of two datasets.

Datasets #scene
settings

#point
cloud pairs length semantic

labels
registration
ground truth

Indoor dataset 89 445 8m ✓ ✓
Campus dataset - 470 1.12km ✓ ✓

5.1 Campus Traffic Dataset

Figure 9: Smart lamppost testbed.

This dataset is collected based on the smart lamppost testbed de-
ployed on a university campus, covering complex traffic scenes,
such as steep slopes, intersections, and road constructions. Cur-
rently, the testbed contains six smart lampposts, whose locations
are shown in Fig. 9. Different sensors are installed on each lamppost,
including one thermal camera, one Radar, and two LiDARs. The two
LiDARs on each lamppost are installed at the height of about 3.5m
and facing opposite directions of the road (Fig. 9). Moreover, we use
a trolley to simulate a vehicle on the road and collect the vehicle
point clouds by the LiDAR mounted on it, which is about 1.5m
above the ground. The LiDARs installed on the smart lampposts
and the trolley are all Livox Horizon LiDARs. To cover more diverse
traffic scenarios, we also collected point cloud data on two other
roads of the campus using a moving pole and keep the height of
the LiDAR on the pole consistent with the smart lampposts.

5.2 Indoor Simulated Traffic Dataset
Fig. 10 shows the hardware and set up for the point cloud data collec-
tion of the indoor traffic dataset. They include a pole used as a sim-
ulated roadside lamppost infrastructure and an F1/10 Autonomous
Vehicle [5] equipped with one LiDAR and one heterogeneous em-
bedded platform (NVIDIA TX2 with Orbitty Carrier board). Both
of them are equipped with Livox Horizon LiDAR. Fig. 10(c) shows
the scenes, and Fig. 10(d) shows the layouts of the testbed.

In this dataset, we use fences to simulate the road’s curbs, and
place different traffic signs and a pole beside the road. We set the
width of the road be about a quarter of the real-world highway lane
width. Other important parameters, such as the length of the lane
lines, the size of the traffic signs, and the height of the LiDAR on



ACM MobiCom ’21, January 31-February 4, 2022, New Orleans, LA, USA Yuze He, Li Ma, Zhehao Jiang, Yi Tang, and Guoliang Xing

Figure 10: The indoor dataset collection.

the pole, are set to be about half of the sizes of real-world roads [3].
We simulate a variety of different traffic scenarios on this testbed,
by changing the types of lanes, numbers and locations of traffic
signs, pitch angles of the LiDAR on the pole, point cloud overlap
ratios, and degrees of occlusion at the vehicle end, etc.

6 EVALUATION
In this section, we first describe the experimental setup and define
evaluationmetrics in Section 6.1 and Section 6.2. Second, we present
application-level results in Section 6.3, which shows that VI-Eye
significantly extends the vehicle’s sensing distance and greatly
improves the resolution of vehicle point clouds. Third, we validate
VI-Eye on real traffic scenes and the indoor simulated traffic testbed
in Section 6.4 and Section 6.5, respectively. In addition, we evaluate
the performance of two key modules of VI-Eye, the saliency point
extractor and the registration in Section 6.6 and Section 6.7.

6.1 Experimental Settings
We divide each of the two self-collected datasets into two groups: an
easy group and a hard group. The hard group contains point cloud
pairs with a large rotation (> 100°) or a small overlap ratio ( < 50%).
The rest of point cloud pairs constitute the easy group. The details of
the two datasets are shown in Table 3. We use the open-source tool,
CloudCompare to calculate the ground-truth transformation of each
vehicle-infrastructure point cloud pair. Specifically, for each cloud
pair, We first manually select several corresponding point pairs (> 3
pairs) and then use CloudCompare to calculate the transformation,
which is regarded as the ground-truth.

We use Jetson TX2 as the computing platform on infrastructure,
and a desktop PC with an Intel i7 2.90GHz CPU and an NVIDIA
RTX2060Super GPU as the computing platform at the vehicle end.
We finetune the public model of RangeNet++ using our two datasets.
The semantic labels of our datasets are manually labeled using the
CloudCompare software. Other modules are implemented using
Point Cloud Library [39] and OpenCV library [13].

Table 3: Grouping of two datasets used in evaluation.

Dataset type #scene settings #point cloud pairs

Indoor easy group 43 215
hard group 46 230

Outdoor easy group - 270
hard group - 200

6.2 Evaluation Metrics
6.2.1 Effective sensing distance and point cloud density. In order to
measure how much autonomous vehicles can benefit from VI-Eye
in practice, we define two application-level metrics, the effective
sensing distance and the point cloud density. These two metrics
respectively measure the range and quality of vehicle perception.
The definition of effective sensing distance is as follows:

𝐸𝑆𝐷 =𝑚𝑎𝑥 ∥𝑝𝑖𝑔 ∥2 +𝑚𝑎𝑥 ∥𝑝 𝑗𝑔 ∥2 s.t.
��𝑁 (

𝑝𝑔, 𝑑
) �� ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (5)

where 𝑝𝑔 indicates the points on the ground, 𝑖, 𝑗 satisfy 𝑝𝑖𝑔 [𝑥] < 0
and 𝑝

𝑗
𝑔 [𝑥] > 0. 𝑁 (𝑝,𝑑) is the set of adjacent points of a point 𝑝

within a length of 𝑑 radius. Only points with the number of neigh-
bour points more than threshold within a 𝑑 radius are considered
effective sensing points. [𝑥] indicates the 𝑥 coordinate of point 𝑝𝑔 ,
and x-axis is the direction where the vehicle is heading. Effective
sensing distance indicates the distance within which the perfor-
mance of object detection is above a predefined threshold. It reflects
“how far the vehicle can see”.

The point cloud density is defined within the effective sensing
distance, which is calculated as: 𝑃𝐶𝐷 =

|𝑉 (𝑆𝑔) |
𝑆𝑔

where 𝑆𝑔 is the
effective sensing area of the road, i.e., the effective sensing distance
× the road width.𝑉 (𝑆𝑔) is a set of points that includes the points on
𝑆𝑔 and all points in the vertical space above 𝑆𝑔 . This is equivalent
to projecting the non-ground points orthographically onto the
ground and then calculating the plane point density. This metric
thus directly reflects the resolution of a point cloud. It reflects “how
clear the vehicle can see”.

6.2.2 RRE, RTE and binary success rate. We adopt the metrics de-
fined in [26] and used in [15, 16, 21] to compare the performance
with other registration algorithms. They include the relative rota-
tion error (RRE) and the relative translational error (RTE), which
measure the point cloud registration errors between the estimated
transformation 𝑇𝐸 and the ground-truth transformation 𝑇𝑇 . RRE is
defined as:

𝐸𝑅 =
∑3
𝑖=1 | angle (𝑖) |

angle = 𝐹

(
𝑅−1
𝑇

𝑅𝐸

) (6)

where 𝑅𝑇 and 𝑅𝐸 are the rotation matrices of the ground-truth
transformation and the estimated transformation, respectively. 𝐹 (·)
transforms a rotation matrix to three Euler angles. RRE is the sum
of the absolute differences in three Euler angles. RTE is defined
as: 𝐸𝑇 = ∥𝑡𝑇 − 𝑡𝐸 ∥2, where 𝑡𝑇 and 𝑡𝐸 are the translation vectors of
the ground-truth transformation and the estimated transformation,
respectively. Besides, we define the registration result as a ‘success’
when the RTE is below a predefined threshold as in [21].

6.2.3 Effective key point ratio. The effective key point ratio is de-
fined to measure the effectiveness of our saliency point extractor
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Figure 11: Distributions of effective sensing distance and
point cloud density before and after registration.

and other key point extraction methods2. The criteria of whether a
key point 𝑝𝑖

𝐼
is effective is as follows:

min
𝑇𝑇 (

𝑝𝑖𝐼

)
− 𝑝 𝑗

𝑉


2
< 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑝

𝑗

𝑉
∈ SV (7)

where 𝑝𝑖
𝐼
and 𝑝

𝑗

𝑉
are the key points in the infrastructure point

cloud and the vehicle point cloud, respectively. and SV is the set
of key points in the vehicle point cloud. 𝑇𝑇 (·) transforms a point
from infrastructure to vehicle by the ground-truth transformation
𝑇𝑇 . Key point 𝑝𝑖

𝐼
in the infrastructure point cloud is defined as

"effective" when there is a key point in the vehicle point cloud that
is close enough (within some threshold distance) to it after the
ground-truth transformation aligns the vehicle-infrastructure point
cloud pair.

The effective key point ratio reflects the quality of the extracted
key points and how much the key point extraction method con-
tributes to a good registration result.

6.3 Application-level Results
We evaluate how much application-level perception improvement
VI-Eye can bring to autonomous vehicles using the real traffic
dataset. This evaluation supports our claims that: (i) VI-Eye ex-
tends the vehicle’s effective sensing distance to areas that it could
not perceive before the vehicle-infrastructure point cloud registra-
tion; (ii) For those areas that the vehicle can perceive on its own
before registration, VI-Eye greatly increases the point cloud density
even to the level surpassing the top-end LiDARs.

6.3.1 Increase of the effective sensing distance. For each vehicle-
infrastructure point cloud pair, we calculate the average effective
sensing distances of the vehicle before and after registration using
Equation (5), where 𝑑 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are set to 1m and 30 points. As
the length of the extended effective sensing distance varies with
the relative position between the vehicle and the infrastructure,
we measure the average improvement for easy group and plot the
distributions in hard group before and after registration in Fig. 11
(a). In the easy group, VI-Eye extends the vehicle’s effective sensing
distance from an average of about 30m to around 52m, i.e., an 73%
improvement. Fig. 11 (a) shows that VI-Eye significantly improves
vehicle’s effective sensing distance from 27 − 33m to 47 − 65m. In
the best case, the effective sensing distance of the vehicle can be
more than doubled.

2We use key points and saliency points interchangeably in the rest of this section.

6.3.2 Increase of the point cloud density. According to the defini-
tion in Section 6.2.1, we calculate the point cloud density of the
original effective sensing area before and after the registration. We
plot the distributions of point cloud density in easy group before
and after registration in Fig. 11 (b), which shows that VI-Eye signif-
icantly improves the point cloud density of the original effective
sensing area from 59−67 𝑝𝑜𝑖𝑛𝑡𝑠/𝑚2 to 88−147 𝑝𝑜𝑖𝑛𝑡𝑠/𝑚2, i.e., an av-
erage 97% improvement. For the hard group, VI-Eye nearly doubles
the point cloud density from an average of around 65 𝑝𝑜𝑖𝑛𝑡𝑠/𝑚2 to
an average of around 124 𝑝𝑜𝑖𝑛𝑡𝑠/𝑚2.

To have a more intuitive understanding on the improvement of
point cloud density after registration, we also calculate the average
point cloud density of the sequence "00" in the KITTI dataset, where
the point clouds are collected by Velodyne HDL-64E LiDAR, one of
the most expensive top-end LiDARs on the market. It can be seen
from Fig. 11 (b) that VI-Eye boosted the point cloud density of the
original effective sensing range even higher than that of Velodyne
HDL-64E LiDAR 3.

In summary, from the application-level perspective, VI-Eye can
enable significantly longer sensing range and more refined percep-
tion for autonomous vehicles.

6.4 Results of Campus Traffic Dataset
We present extensive performance evaluation by comparing with
four point cloud registration algorithms. (i) ICP [10], the most
widely used point cloud registration algorithm; (ii) NDT [12], an
algorithm based on probability density; (iii) The feature based al-
gorithms, SAC-IA [38] and FGR [57]. The implementations of ICP,
NDT, and SAC-IA are based on the Point Cloud Library (PCL) [39],
and the implementation of FGR is from Open3D [58]. we adjusted
the parameters of the baselines to optimize the best performance
in our datasets.

As introduced in Section 6.1, we divide the real traffic dataset into
an easy group and a hard group. We first show two typical examples
where VI-Eye successfully registered cloud pairs with centimeter-
level accuracywhile all baselines performed poorly. Fig. 12 (a) shows
an easy example, where LiDARs on vehicle and infrastructure face
the same direction of the road but are separated by a certain distance.
In this case, all the baselines tend to align the two starts (yellow
lines) of two point clouds, which leads to registration errors of
several meters. Fig. 12 (b) shows a hard example, where LiDARs on
vehicle and infrastructure face the opposite directions of the road
(indicated by yellow arrows). In this case, the infrastructure point
cloud needs a large rotation (more than 100°) to be aligned with
the vehicle point cloud. However, all the baselines fail on this large
rotation and result in registration errors of more than 20m.

Table 4 shows the experiment results on this real traffic dataset,
which shows the success rate and the average RRE, RTE scores
and the run time of the successful registrations. Results with RTE
lower than 2m are viewed as ‘success’, which is consistent with
the requirements of autonomous driving navigation [30]. For RRE,
VI-Eye is at most one-fifth of other baselines. For RTE, VI-Eye is
19.34% to 0.61% of other baselines. For run time, VI-Eye is 2 − 165
times faster than other baselines. Moreover, VI-Eye improves the

3The market price of LiDAR used in our experiments is about $800, 1% of that of
Velodyne HDL-64E LiDAR.
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Figure 12: Two typical registration results ofVI-Eye. We crop
unimportant points for better visualization.

Table 4: Results of different registration algorithms on the
real traffic dataset.

methods RRE(°) RTE(cm) time(s) success rate

easy group

ICP 7.13 75.74 3.98 11.48%
NDT 12.62 122.17 0.48 9.26%

SAC-IA 15.89 81.83 25.73 11.11%
FGR 22.80 150.21 1.18 21.85%

VI-Eye 2.01 14.65 0.22 95.93%

hard group

ICP 181.34 2700.25 4.09 0%
NDT 187.15 2740.52 0.94 0%

SAC-IA 142.57 2650.46 31.4 0%
FGR 225.88 2720.44 1.36 0%

VI-Eye 2.08 16.69 0.19 94.00%

success rate by at least 4.5 times. In the hard group, the RTE of these
four baselines is as high as 27m. We can also see that, VI-Eye’s run
time on the hard group is slightly shorter than that on the easy
group. This is reasonable because in the easy group, overlap ratio
is larger, which results in multiple matching saliency point pairs
between the infrastructure and vehicle. This further leads to large
search space for the registration module. On the other hand, the
overlap ratio is small for the hard group, results in less consistent
saliency points between the vehicle-infrastructure point cloud pairs.

Thanks to our extension of the two-tier label verification, most of
those inconsistent saliency points can be easily removed, thereby
greatly reducing the search space of the registration. We show some
example registration results in Fig. 13, which shows that VI-Eye can
successfully align the vehicle-infrastructure point cloud pair where
all baselines fail. Another example of registration results in Fig. 15
shows that VI-Eye achieves more refined registration compared to
the best performing baseline ICP.

6.5 Results of Indoor Simulated Traffic Dataset
We also compare VI-Eye with the four baselines on the indoor
simulated traffic dataset. The threshold of the registration success
is set to 1m (same as [21]). Fig. 14 shows the qualitative registration
results on this dataset, which shows that VI-Eye achieves a more
accurate registration result (see the anastomosis of walls). The
performance of VI-Eye and other baselines are shown in Table 5.

Table 5: Results of different registration algorithms on the
indoor simulated traffic dataset

methods RRE(°) RTE(cm) time(s) success rate

easy group

ICP 18.48 75.72 2.12 33.02%
NDT 21.07 93.24 1.37 26.05%

SAC-IA 32.11 19.22 47.41 40.00%
FGR 36.12 90.51 0.85 13.49%

VI-Eye 2.55 8.62 0.23 94.88%

hard group

ICP 206.86 755.66 1.92 0%
NDT 194.03 739.11 1.19 0%

SAC-IA 239.40 686.44 49.31 0%
FGR 217.70 744.36 0.69 0%

VI-Eye 3.26 9.02 0.20 89.13%

Although the point cloud pairs in the easy group have a large
overlap ratio, the four baselines do not yield good performance.
For RRE, other methods results in at least 18.48°. In contrast, the
error of VI-Eye is at least one order of magnitude smaller. For RTE,
VI-Eye reduces the error by more than half compared to the best
performing baseline. For run time, VI-Eye is about a quarter of
the fastest baseline. The run time of NDT and FGR is significantly
shorter than the other two baselines. That’s because they do not
require computing point to point correspondence (like ICP) or iter-
ative sampling (like SAC-IA). For success rate, all the four baselines
are less than half. The reason is that there are inherently large
differences in scanning heights and scanning perspectives between
the vehicle-infrastructure point cloud pairs. In the hard group, the
overlap ratio is small or the rotation is large. We can see that all
four baselines fail to align any vehicle-infrastructure point cloud
pairs. VI-Eye shows a high success rate in both two groups. It can
achieve a centimeter-level registration accuracy within around 0.2s.

Another observation is that the performances of the four base-
line methods in both groups are better on the indoor simulated
dataset, especially for RTE and success rate. This is expected be-
cause the campus dataset contains longer roads and more complex
and diverse features than the indoor dataset, which greatly reduced
the accuracy of existing registration methods. On the contrary, our
method achieves better success rate on the campus dataset than
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Figure 13: A bird-eye view of the registration results in the real traffic scene. We crop unimportant points in results and only
leave the points of the road (purple), curbs ans trees (blue and green) for better visualization.

Figure 14: A bird-eye view of the registration results on the indoor testbed. We crop unimportant points in results and only
leave the points of the road and wall for better visualization.

(a) ICP (b) ours

Figure 15: A closer look at the qualitative results on the real
traffic scene.
Table 6: Comparison with different key point extraction al-
gorithms.

methods #key points in
point cloud (I)

#key points in
point cloud (V)

#effective
key point pairs

effective
key point ratio

Harris3D 145.65 142.72 30.69 21.60%
ISS3D 904.09 962.78 294.25 33.09%
SIFT3D 532.94 400.06 197.94 49.57%
VI-Eye 21.94 19.78 17.56 71.76%

the indoor dataset. This is because, to stress test VI-Eye we set up
more scenes that are challenging for VI-Eye but hardly affect other
baselines, such as the scenes with multiple closely located semantic
objects or only one kind of semantic objects.

6.6 Performance of Saliency Point Extractor
We now evaluate the performance of saliency point extractor, one
of the key modules in VI-Eye, by comparing with three widely used
3D keypoint extraction algorithms: Harris3D [44], ISS3D [55], and
SIFT3D [24], which are implemented using PCL [39]. We compare
with these method using two metrics: the average number of ex-
tracted key points in each point cloud and the effective key point
ratio. The threshold in Equation (7) is set to 0.3m. Table 6 shows the
results for the indoor simulated traffic dataset. We can see that the

Figure 16: Visualization of key points extracted by baseline
methods and our saliency point extractor.

three baselines extracted over 100 or even hundreds of key points in
vehicle and infrastructure point clouds, while only less than half of
them are effective for registration. These baselines use the features
such as the curvature and normal of the local point cloud to extract
corner points or points on the edges. Although such an approach
can be effective for CAD models [48], it performs poorly when
applied to point clouds of complex traffic scenes, as these methods
extract too many key points with similar features.

In contrast, VI-Eye extracts significantly fewer saliency points
but achieves an effective key point ratio of more than 70%. We
visualize the key points extracted by the three baselines and our
saliency point extractor in Fig. 16. Key points extracted by the three
baselines are scattered randomly in the scene, while the key points
extracted by VI-Eye are highly interpretable: all geometric vertices
or centers of the semantic objects to be used in registration.
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Table 7: Average run time of different modules of VI-Eye on
the real traffic dataset

modules run time (ms) proportion (%)

easy group

semantic segmenter 139.56 64.02
saliency point extractor 28.22 12.95
ground registration 14.11 6.47

registration 36.11 16.57

hard group

semantic segmenter 139.03 72.18
saliency point extractor 22.83 11.85
ground registration 11.42 5.93

registration 19.33 10.04

6.7 Performance of Registration
In this subsection, we evaluate the performance of registration mod-
ule. To verify that the proposed two extensions indeed accelerate
the RANSAC algorithm, we conduct an ablation experiment on the
campus dataset. Two metrics used to evaluate the registration per-
formance include the average registration time and average number
of iterations. We implement a baseline by replacing the registration
module with the original RANSAC algorithm and leave all other
modules unchanged.

Our registration module significantly reduces the average num-
ber of iterations from 4712 to 1547, which shows the effectiveness of
the two-tier label verification that only matches saliency point pairs
with consistent semantic label and primitive label. Another finding
is that the reduction in average registration time is more drastic
than the reduction in the number of iterations, i.e., from 1.74s to
0.21s. This shows the effectiveness of early check, which terminates
iterations that are doomed to fail early to reduce unnecessary cal-
culations, thus reduces the average time required for each iteration.
The ablation experiments show that the proposed two extensions
play an important role in achieving real-time registration.

6.8 Analysis of Run Time
To explore the possibility of further reducing the run time of VI-Eye,
we measure the average run time of different modules of VI-Eye
and their proportion of total run time in Table 7. The experiment
is conducted on the real traffic dataset using a desktop PC with
an Intel i7 2.90GHz CPU and an NVIDIA RTX2060Super GPU. We
can find that the semantic segmenter’s run time accounts for more
than half of the overall run time. Unfortunately, it’s challenging
to reduce such delay since the run time of the state-of-the-art
point cloud-based segmentation algorithms are around 0.1s to 1s
according to KITTI benchmark [26]. The saliency point extractor
and registration module have the second or third longest run time
due to the point-wise and pixel-wise operations in the saliency
point extractor and iterations in the registration module. Another
observation is that the registration module’s run time in the easy
group is nearly twice that in the hard group, which is consistent
with the results in Section 6.4. Our current implementation of VI-
Eye is based on Python. The run time of the three modules can be
further reduced by code optimization, e.g., by implementing them
in C++, which is left for future work.

7 DISCUSSION
Minimum Number of Saliency Points. As a key advantage, VI-
Eye is able to register vehicle-infrastructure point cloud pairs with
small overlaps. The performance of VI-Eye depends on the number
of sharing saliency points between the vehicle-infrastructure point
clouds. According to Section 4.5, in principle, 3 saliency point pairs
is the minimum requirement for VI-Eye to work. Note that a single
sharing semantic object may have 1-5 saliency points (according
to Section 4.3, depending on the shape and completion of sharing
objects). Therefore, VI-Eye has a low requirement on the number
of sharing objects between the infrastructure and the vehicle.

Communication and Computation Overhead. The commu-
nication overhead of VI-Eye depends on which fusion mode is used.
For abstract information fusion, VI-Eye requires little bandwidth
(about tens of KB/s) since only saliency points need to be trans-
mitted. For raw data fusion, both infrastructure point clouds and
saliency points need to be transmitted. The bandwidth required is
about 12MB/s (for Livox Horizon LiDAR), which can potentially
be further reduced using data compression algorithms since large
amount of points are temporally redundant.

As discussed in Section 4, VI-Eye’s computation overhead is
much lower than those of the baselines, which use all points in the
point cloud to calculate the transform between the infrastructure
and the vehicle. VI-Eye only uses a small part of the point cloud to
calculate the transform. Specifically, the saliency point extractor
module and the ground registration module are based on the point
cloud of certain semantic objects, and the registration module only
requires very few saliency points. Therefore, VI-Eye has the shortest
run time compared with the baselines (Table 4 and Table 5).

8 CONCLUSION AND FUTUREWORK
In this paper, we present VI-Eye, the first system that aligns vehicle-
infrastructure point cloud pairs at centimeter accuracy in real-time,
which enables a broad range of on-vehicle autonomous driving
applications. Evaluations on the two self-collected datasets show
that VI-Eye outperforms state-of-the-art baselines in accuracy, ro-
bustness and efficiency.

We will address several limitation of VI-Eye in future work. First,
the current design of VI-Eye only focuses on pairwise registration.
However, it is not practical to register vehicle-infrastructure point
cloud pairs for every frame considering the high run time overhead.
A possible solution is to select key point cloud frames for registra-
tion while using the vehicle‘s odometry to update the transform in
non-key point cloud frames. Second, the performance of VI-Eye is
heavily dependent upon the accuracy of the saliency point extractor,
which in turn relies on the performance of the semantic segmenter.
In the future, we will extend the pure point cloud semantic seg-
mentation to segmentation based on camera-LiDAR fusion since
images allow for better detection and segmentation performance
than point clouds.
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